Fr. 272.00

Handbook of Evolutionary Machine Learning

Englisch · Taschenbuch

Versand in der Regel in 1 bis 2 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

This book, written by leading international researchers of evolutionary approaches to machine learning, explores various ways evolution can address machine learning problems and improve current methods of machine learning. Topics in this book are organized into five parts. The first part introduces some fundamental concepts and overviews of evolutionary approaches to the three different classes of learning employed in machine learning. The second addresses the use of evolutionary computation as a machine learning technique describing methodologic improvements for evolutionary clustering, classification, regression, and ensemble learning. The third part explores the connection between evolution and neural networks, in particular the connection to deep learning, generative and adversarial models as well as the exciting potential of evolution with large language models. The fourth part focuses on the use of evolutionary computation for supporting machine learning methods. This includes methodological developments for evolutionary data preparation, model parametrization, design, and validation. The final part covers several chapters on applications in medicine, robotics, science, finance, and other disciplines. Readers find reviews of application areas and can discover large-scale, real-world applications of evolutionary machine learning to a variety of problem domains. This book will serve as an essential reference for researchers, postgraduate students, practitioners in industry and all those interested in evolutionary approaches to machine learning.

Inhaltsverzeichnis

Part 1. Overview chapters.- Chapter 1. EML Fundamentals.- Chapter 2. EML in Supervised Learning.- Chapter 3. EML in Unsupervised Learning.- Chapter 4. EML in Reinforcement Learning.- Part 2. Evolutionary Computation as Machine Learning.- Chapter 5. Evolutionary Clustering.- Chapter 6. Evolutionary Classification and Regression.- Chapter 7. Evolutionary Ensemble Learning.- Chapter 8. Evolutionary Deep Learning.- Chapter 9. Evolutionary Generative Models.- Part 3. Evolutionary Computation for Machine Learning.- Chapter 10. Evolutionary Data Preparation.- Chapter 11. Evolutionary Feature Engineering and Selection.- Chapter 12. Evolutionary Model Parametrization.- Chapter 13. Evolutionary Model Design.- Chapter 14. Evolutionary Model Validation.- Part 4. Applications.- Chapter 15. EML in Medicine.- Chapter 16. EML in Robotics.- Chapter 17. EML in Finance.- Chapter 18. EML in Science.- Chapter 19. EML in Environmental Science.- Chapter 20. EML in the Arts.

Produktdetails

Mitarbeit Wolfgang Banzhaf (Herausgeber), Penousal Machado (Herausgeber), Mengjie Zhang (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2024
 
EAN 9789819938162
ISBN 978-981-9938-16-2
Seiten 768
Abmessung 155 mm x 41 mm x 235 mm
Gewicht 1165 g
Illustration XVI, 768 p. 202 illus., 148 illus. in color.
Serie Genetic and Evolutionary Computation
Thema Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Informatik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.