Fr. 199.00

Model Order Reduction for Design, Analysis and Control of Nonlinear Vibratory Systems

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The book presents reduction methods that are using tools from dynamical systems theory in order to provide accurate models for nonlinear dynamical solutions occurring in mechanical systems featuring either smooth or non smooth nonlinearities. The cornerstone of the chapters is the use of methods defined in the framework of the invariant manifold theory for nonlinear systems, which allows definitions of efficient methods generating the most parsimonious nonlinear models having minimal dimension, and reproducing the dynamics of the full system under generic assumptions. Emphasis is put on the development of direct computational methods for finite element structures. Once the reduced order model obtained, numerical and analytical methods are detailed in order to get a complete picture of the dynamical solutions of the system in terms of stability and bifurcation. Applications from the MEMS and aerospace industry are covered and analyzed. Geometric nonlinearity, friction nonlinearity and contacts in jointed structures, detection and use of internal resonance, electromechanical and piezoelectric coupling with passive control, parametric driving are surveyed as key applications. The connection to digital twins is reviewed in a general manner, opening the door to the efficient use of invariant manifold theory for nonlinear analysis, design and control of engineering structures.

Inhaltsverzeichnis

Modelling, Reductionism and the Implications for Digital Twins.- Nonlinear normal modes as invariant manifolds for model order reduction.- The Direct Parametrization of Invariant Manifolds applied to model order reduction of microstructures.- Understanding, computing and identifying the nonlinear dynamics of elastic and piezoelectric structures thanks to nonlinear modes.

Zusammenfassung

The book presents reduction methods that are using tools from dynamical systems theory in order to provide accurate models for nonlinear dynamical solutions occurring in mechanical systems featuring either smooth or non smooth nonlinearities. The cornerstone of the chapters is the use of methods defined in the framework of the invariant manifold theory for nonlinear systems, which allows definitions of efficient methods generating the most parsimonious nonlinear models having minimal dimension, and reproducing the dynamics of the full system under generic assumptions. Emphasis is put on the development of direct computational methods for finite element structures. Once the reduced order model obtained, numerical and analytical methods are detailed in order to get a complete picture of the dynamical solutions of the system in terms of stability and bifurcation. Applications from the MEMS and aerospace industry are covered and analyzed. Geometric nonlinearity, friction nonlinearity and contacts in jointed structures, detection and use of internal resonance, electromechanical and piezoelectric coupling with passive control, parametric driving are surveyed as key applications. The connection to digital twins is reviewed in a general manner, opening the door to the efficient use of invariant manifold theory for nonlinear analysis, design and control of engineering structures.

Produktdetails

Mitarbeit Attilio Frangi (Herausgeber), Cyril Touzé (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 16.10.2024
 
EAN 9783031674983
ISBN 978-3-0-3167498-3
Seiten 298
Abmessung 155 mm x 18 mm x 235 mm
Gewicht 628 g
Illustration IX, 298 p. 121 illus., 84 illus. in color.
Serie CISM International Centre for Mechanical Sciences
Themen Naturwissenschaften, Medizin, Informatik, Technik > Technik > Maschinenbau, Fertigungstechnik

Elektronik, Materialwissenschaft, Microsystems and MEMS, Structural Materials, MEMS, Multibody Systems and Mechanical Vibrations, Model Order Reduction, nonlinear vibratory systems, nonlinear normal modes, dynamical systems theory, geometric nonlinearity, friction nonlinearity, Nonlinear mechanical systems

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.