Fr. 204.00

Advances in Hyper-Heuristics

Englisch · Fester Einband

Erscheint am 01.03.2025

Beschreibung

Mehr lesen

The field of hyper-heuristics has been developing rapidly over the years with a number of new advancements in the field. The book firstly examines the different levels of generality that can be attained by a hyper-heuristic and provides a standardization for hyper-heuristics. The book investigates a further level of generality in hyper-heuristics across discrete and continuous optimization. The concept of learning within hyper-heuristics is then reviewed. The use of hyper-heuristics for the automated design of machine learning and search algorithms as well as the automated design of hyper-heuristics and hybrid hyper-heuristics is examined. An overview of the use of approaches not previously employed by hyper-heuristics, such as neural networks, is given. Recent trends in computational intelligence, namely, transfer learning and explainable artificial intelligence, are reported in the context of hyper-heuristics. Recent applications of hyper-heuristics in areas such multi-objective optimization and search-based software engineering are also presented.
This book is suitable for postgraduate students, researchers, and practitioners who are interested in evolutionary computing, artificial intelligence, or operations research.

Inhaltsverzeichnis

Chapter 1: Introduction.- Chapter 2: Generalization Levels of Hyper-Heuristics.- Chapter 3: Evaluation of Hyper-Heuristic Performance.- Chapter 4 - Standardization of Hyper-Heuristics.- Chapter 5: Automated Design Using Hyper-Heuristics.- Chapter 6: Machine Learning in Hyper-Heuristics.- Chapter 7: Cross-Domain Hyper-Heuristics Revisited.- Chapter 8: Hybrid Hyper-Heuristics.- Chapter 9: Hyper-Heuristics for Continuous Optimization.- Chapter 10: Explainable Hyper-Heuristics.- Chapter 11: Automated Design of Hyper-Heuristics.- Chapter 12: Transfer Learning in Hyper-Heuristics.- Chapter 13: Future Research Directions.- Chapter 14: Conclusions.

Über den Autor / die Autorin










Nelishia Pillay is a professor in the Department of Computer Science at the University of Pretoria in Gauteng, South Africa. One of her main areas of research is hyper-heuristics. She has co-authored the book Hyper-Heuristics: Theory and Applications (Springer, 2018) together with Rong Qu. She has previously served as the chair of the IEEE Task Force on Hyper-Heuristics. She has presented 18 tutorials on hyper-heuristics at capstone international conferences in the field. She has authored/co-authored more than 40 peer reviewed research papers on hyper-heuristics.

Rong Qu is a professor in the School of Computer Science at the University of Nottingham, UK. Her main research interests include the modelling and optimization algorithms in scheduling and evolutionary algorithms for optimisation problems. In addition to the previous joint-authored book with Nelishia Pillay on hyper-heuristics, she has published more than 90 papers on intelligent optimisation algorithms at high impact journals since 2000.


Produktdetails

Autoren Nelishia Pillay, Rong Qu
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erscheint 01.03.2025, verspätet
 
EAN 9789819755578
ISBN 978-981-9755-57-8
Seiten 150
Illustration Approx. 150 p.
Serie Natural Computing Series
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Informatik

Optimierung, Künstliche Intelligenz, Standardization, Optimization, Artificial Intelligence, Computational Intelligence, Models of Computation, generalization, multi-objective optimization, automated algorithm design, hyper-heuristics

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.