Fr. 178.00

Monotone Nonautonomous Dynamical Systems

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

The monograph present ideas and methods, developed by the author, to solve the problem of existence of Bohr/Levitan almost periodic (respectively, almost recurrent in the sense of Bebutov, almost authomorphic, Poisson stable) solutions and global attractors of monotone nonautonomous differential/difference equations. Namely, the text provides answers to the following problems: 
1. Problem of existence of at least one Bohr/Levitan almost periodic solution for cooperative almost periodic differential/difference equations;  
2. Problem of existence of at least one Bohr/Levitan almost periodic solution for uniformly stable and dissipative monotone differential equations (I. U. Bronshtein's conjecture, 1975); 
3. Problem of description of the structure of the global attractor for monotone nonautonomous dynamical systems;  
4. The structure of the invariant/minimal sets and global attractors for one-dimensional monotone nonautonomous dynamical systems;  
5. Asymptotic behavior of monotone nonautonomous dynamical systems with a first integral (Poisson stable motions, convergence, asymptotically Poisson stable motions and structure of the Levinson center (compact global attractor) of dissipative systems); 
6. Existence and convergence to Poisson stable motions of monotone sub-linear nonautonomous dynamical systems. 
This book will be interesting to the mathematical community working in the field of nonautonomous dynamical systems and their applications (population dynamics, oscillation theory, ecology, epidemiology, economics, biochemistry etc). The book should be accessible to graduate and PhD students who took courses in real analysis (including the elements of functional analysis, general topology) and with general background in dynamical systems and qualitative theory of differential/difference equations. 
 

Inhaltsverzeichnis

Poisson Stable Motions of Dynamical Systems .- Compact Global Attractors .- V-Monotone Nonautonomous Dynamical Systems .- Poisson Stable Motions and Global Attractors of Monotone Nonautonomous Dynamical Systems.

Produktdetails

Autoren David Cheban, David N. Cheban
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 16.07.2024
 
EAN 9783031600562
ISBN 978-3-0-3160056-2
Seiten 460
Abmessung 155 mm x 29 mm x 235 mm
Gewicht 824 g
Illustration XIX, 460 p.
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.