Fr. 198.00

Fractional Differential Equations - Modeling, Discretization, and Numerical Solvers

Englisch · Taschenbuch

Versand in der Regel in 1 bis 2 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

The content of the book collects some contributions related to the talks presented during the INdAM Workshop "Fractional Differential Equations: Modelling, Discretization, and Numerical Solvers", held in Rome, Italy, on July 12-14, 2021. All contributions are original and not published elsewhere.

The main topic of the book is fractional calculus, a topic that addresses the study and application of integrals and derivatives of noninteger order. These operators, unlike the classic operators of integer order, are nonlocal operators and are better suited to describe phenomena with memory (with respect to time and/or space). Although the basic ideas of fractional calculus go back over three centuries, only in recent decades there has been a rapid increase in interest in this field of research due not only to the increasing use of fractional calculus in applications in biology, physics, engineering, probability, etc., but also thanks to the availability of new and more powerful numerical tools that allow for an efficient solution of problems that until a few years ago appeared unsolvable. The analytical solution of fractional differential equations (FDEs) appears even more difficult than in the integer case. Hence, numerical analysis plays a decisive role since practically every type of application of fractional calculus requires adequate numerical tools.
The aim of this book is therefore to collect and spread ideas mainly coming from the two communities of numerical analysts operating in this field - the one working on methods for the solution of differential problems and the one working on the numerical linear algebra side - to share knowledge and create synergies. At the same time, the book intends to realize a direct bridge between researchers working on applications and numerical analysts. Indeed, the book collects papers on applications, numerical methods for differential problems of fractional order, and related aspects in numerical linear algebra.The target audience of the book is scholars interested in recent advancements in fractional calculus.

Inhaltsverzeichnis

Chapter 1. A New Diffusive Representation for Fractional Derivatives, Part I: Construction, Implementation and Numerical Examples.- Chapter 2. Exact solutions for the fractional nonlinear Boussinesq equation.- Chapter 3. A numerical procedure for fractional-time-space differential equations with the spectral fractional Laplacian.- Chapter 4. Spectral Analysis of Matrices in B-Spline Galerkin Methods for Riesz Fractional Equations.- Chapter 5.Do the Mittag-Leffler functions preserve the properties of their matrix arguments?.- Chapter 6. On the solutions of the fractional generalized Gierer-Meinhardt Model.- Chapter 7. A convolution-based method for an integro-differential equation in mechanics.- Chapter 8. A MATLAB code for fractional differential equations based on two-step spline collocation methods.

Produktdetails

Mitarbeit Angelamaria Cardone (Herausgeber), Marco Donatelli (Herausgeber), Fabio Durastante (Herausgeber), Roberto Garrappa (Herausgeber), Mariarosa Mazza (Herausgeber), Marina Popolizio (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 18.06.2024
 
EAN 9789811977183
ISBN 978-981-1977-18-3
Seiten 146
Abmessung 155 mm x 8 mm x 235 mm
Gewicht 254 g
Illustration XII, 146 p. 59 illus., 19 illus. in color.
Serie Springer INdAM Series
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.