Fr. 77.00

Introduction to Combinatorial Torsions - Notes taken by Felix Schlenk

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide.

Inhaltsverzeichnis

I Algebraic Theory of Torsions.- 1 Torsion of chain complexes.- 2 Computation of the torsion.- 3 Generalizations and functoriality of the torsion.- 4 Homological computation of the torsion.- II Topological Theory of Torsions.- 5 Basics of algebraic topology.- 6 The Reidemeister-Franz torsion.- 7 The Whitehead torsion.- 8 Simple homotopy equivalences.- 9 Reidemeister torsions and homotopy equivalences.- 10 The torsion of lens spaces.- 11 Milnor's torsion and Alexander's function.- 12 Group rings of finitely generated abelian groups.- 13 The maximal abelian torsion.- 14 Torsions of manifolds.- 15 Links.- 16 The Fox Differential Calculus.- 17 Computing ?(M3) from the Alexander polynomial of links.- III Refined Torsions.- 18 The sign-refined torsion.- 19 The Conway link function.- 20 Euler structures.- 21 Torsion versus Seiberg-Witten invariants.- References.

Zusatztext

"[The book] contains much of the needed background material in topology and algebra…Concering the considerable material it covers, [the book] is very well-written and readable."
--Zentralblatt Math

Bericht

"[The book] contains much of the needed background material in topology and algebra...Concering the considerable material it covers, [the book] is very well-written and readable."
--Zentralblatt Math

Produktdetails

Autoren Vladimir Turaev, Vladimir G. Turaev
Verlag Springer, Basel
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2001
 
EAN 9783764364038
ISBN 978-3-7643-6403-8
Seiten 124
Gewicht 260 g
Illustration VIII, 124 p. 13 illus.
Serien Lectures in Mathematics
Lectures in Mathematics. ETH Zürich
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Geometrie

C, Addition, Function, Construction, geometry, Homology, Torsion, Variable, Group, Mathematics and Statistics, Manifold, Algebraic Topology, Maximum, homotopy, Reidemeister torsion

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.