Fr. 83.00

Musical Scales and their Mathematics

Englisch · Taschenbuch

Erscheint am 11.09.2026

Beschreibung

Mehr lesen

Are musical scales just trivial? This book explores this question, revealing the complexity of creating "harmony" in tonal systems.
Why 12 tones? Are there alternatives? Are 12 fifths equal 7 octaves? What is "consonance"? When are intervals "perfect" or "imperfect"? What is meant by "tonal characteristics", "whole tone" and "semitone"? "Ancient tuning" vs potentially new?
Answers need thoughtful explanations, revealing interconnectedness. In this context, mathematics is pivotal, explaining scale generation, temperament systems, etc.
Divided into three parts, this book covers:

  • Modern interval arithmetic driven by prime numbers.
  • Architectural principles of scales, with examples.
  • Systematic nature of historical tunings and temperaments.
Understanding only requires school knowledge, developed into algebraic tools applied musically.
 

Inhaltsverzeichnis

Part I: Mathematical Theory of Intervals. Musical intervals and tones.- The commensurability of musical intervals.- Harmonic-rational and classical-antique intervals. - Iterations and their music-mathematical laws.- Part II: Mathematical Theory of Scales. Scales and their models.- Combinatorial games surrounding characteristics.- Diatonic and chromatic aspects of the circle of fifths.- Part III: Mathematical Temperament Theory. The Pythagorean interval system.- Meantone temperament.- The natural-harmonic system and enharmonics.- Equal temperament and its intriguing context.- Epilogue - Postlude.- Indexes.

Über den Autor / die Autorin

Prof. Dr. Karlheinz Schüffler
is a mathematician, organist, and choir conductor. As a mathematician, he teaches at the University of Düsseldorf and previously at the Niederrhein University of Applied Sciences (Krefeld). As a musician, he has been dedicated to church music since his youth, with both organ and mathematical music theory being his areas of expertise.

Zusammenfassung

Are musical scales just trivial? This book explores this question, revealing the complexity of creating "harmony" in tonal systems.
Why 12 tones? Are there alternatives? Are 12 fifths equal 7 octaves? What is "consonance"? When are intervals "perfect" or "imperfect"? What is meant by "tonal characteristics", "whole tone" and "semitone"? "Ancient tuning" vs potentially new?
Answers need thoughtful explanations, revealing interconnectedness. In this context, mathematics is pivotal, explaining scale generation, temperament systems, etc.
Divided into three parts, this book covers:

  • Modern interval arithmetic driven by prime numbers.
  • Architectural principles of scales, with examples.
  • Systematic nature of historical tunings and temperaments.
Understanding only requires school knowledge, developed into algebraic tools applied musically.
 

Produktdetails

Autoren Karlheinz Schüffler
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erscheint 11.09.2026
 
EAN 9783662695401
ISBN 978-3-662-69540-1
Seiten 711
Illustration XXIII, 711 p. 135 illus., 10 illus. in color.
Serie Mathematics Study Resources
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Sonstiges

Mathematik, Musikgeschichte, Musikwissenschaft und Musiktheorie, History of Music, Mathematics in Music, Theory of Music, General Mathematics, music theory, Pythagorean tuning, Pythagorean comma, Temperaments, interval arithmetic, Musical scales

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.