Fr. 147.60

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations

Englisch · Fester Einband

Versand in der Regel in mind. 4 Wochen (Titel wird speziell besorgt)

Beschreibung

Mehr lesen

This work was initiated in the summer of 1985 while all of the authors were at the Center of Nonlinear Studies of the Los Alamos National Laboratory; it was then continued and polished while the authors were at Indiana Univer sity, at the University of Paris-Sud (Orsay), and again at Los Alamos in 1986 and 1987. Our aim was to present a direct geometric approach in the theory of inertial manifolds (global analogs of the unstable-center manifolds) for dissipative partial differential equations. This approach, based on Cauchy integral mani folds for which the solutions of the partial differential equations are the generating characteristic curves, has the advantage that it provides a sound basis for numerical Galerkin schemes obtained by approximating the inertial manifold. The work is self-contained and the prerequisites are at the level of a graduate student. The theoretical part of the work is developed in Chapters 2-14, while in Chapters 15-19 we apply the theory to several remarkable partial differ ential equations.

Inhaltsverzeichnis

Preface.- Acknowledgments.- 1 Presentation of the Approach and of the Main Results.- 2 The Transport of Finite-Dimensional Contact Elements.- 3 Spectral Blocking Property.- 4 Strong Squeezing Property.- 5 Cone Invariance Properties.- 6 Consequences Regarding the Global Attractor.- 7 Local Exponential Decay Toward Blocked Integral Surfaces.- 8 Exponential Decay of Volume Elements and the Dimension of the Global Attractor.- 9 Choice of the Initial Manifold.- 10 Construction of the Inertial Manifold.- 11 Lower Bound for the Exponential Rate of Convergence to the Attractor.- 12 Asymptotic Completeness: Preparation.- 13 Asymptotic Completeness: Proof of Theorem 12.1.- 14 Stability with Respect to Perturbations.- 15 Application: The Kuramoto-Sivashinsky Equation.- 16 Application: A Nonlocal Burgers Equation.- 17 Application: The Cahn-Hilliard Equation.- 18 Application: A Parabolic Equation in Two Space Variables.- 19 Application: The Chaffee-Infante Reaction-Diffusion Equation.- References.

Produktdetails

Autoren P. Constantin, C. Foias, B. Nicolaenko, R. Temam
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 25.10.1988
 
EAN 9780387967295
ISBN 978-0-387-96729-5
Seiten 123
Abmessung 163 mm x 241 mm x 13 mm
Gewicht 360 g
Illustration X, 123 p.
Serie Applied Mathematical Sciences
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Geometrie
Sachbuch > Natur, Technik > Natur: Allgemeines, Nachschlagewerke

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.