Fr. 90.00

Peeling Random Planar Maps - École d'Été de Probabilités de Saint-Flour XLIX - 2019

Englisch · Taschenbuch

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

These Lecture Notes provide an introduction to the study of those discrete surfaces which are obtained by randomly gluing polygons along their sides in a plane. The focus is on the geometry of such random planar maps (diameter, volume growth, scaling and local limits...) as well as the behavior of statistical mechanics models on them (percolation, simple random walks, self-avoiding random walks...).A "Markovian" approach is adopted to explore these random discrete surfaces, which is then related to the analogous one-dimensional random walk processes. This technique, known as "peeling exploration" in the literature, can be seen as a generalization of the well-known coding processes for random trees (e.g. breadth first or depth first search). It is revealed that different types of Markovian explorations can yield different types of information about a surface.
Based on an École d'Été de Probabilités de Saint-Flour course delivered by the author in 2019, the book is aimed at PhD students and researchers interested in graph theory, combinatorial probability and geometry.  Featuring open problems and a wealth of interesting figures, it is the first book to be published on the theory of random planar maps.

Inhaltsverzeichnis

Part I (Planar) Maps. - 1. Discrete Random Surfaces in High Genus. - 2. Why Are Planar Maps Exceptional?. - 3. The Miraculous Enumeration of Bipartite Maps. - Part II Peeling Explorations. - 4. Peeling of Finite Boltzmann Maps. - 5. Classification of Weight Sequences. - Part III Infinite Boltzmann Maps. - 6. Infinite Boltzmann Maps of the Half-Plane. - 7. Infinite Boltzmann Maps of the Plane. - 8. Hyperbolic Random Maps. - 9. Simple Boundary, Yet a Bit More Complicated. - 10. Scaling Limit for the Peeling Process. - Part IV Percolation(s). - 11. Percolation Thresholds in the Half-Plane. - 12. More on Bond Percolation. - Part V Geometry. - 13. Metric Growths. - 14. A Taste of Scaling Limit. - Part VI Simple Random Walk. - 15. Recurrence, Transience, Liouville and Speed. - 16. Subdiffusivity and Pioneer Points.

Über den Autor / die Autorin










Nicolas Curien has been a Professor at Université Paris-Saclay since 2014. He works on random geometry in a broad sense.

Bericht

"This lengthy monograph is an excellent addition to the long-running École d'Été de Probabilités de Saint-Flour series of extended lecture notes, continuing their tradition of reader-friendly (for an active researcher in mathematical probability) authoritative accounts of an active technical topic. It has the traditional underlying definition/ theorem/proof format ... and numerous well thought out figures, which (to your reviewer) are essential for any work on graph theory. ... this monograph will long remain a key account of its topics." (David J. Aldous, Mathematical Reviews, December, 2024)

Produktdetails

Autoren Nicolas Curien
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 10.11.2023
 
EAN 9783031368530
ISBN 978-3-0-3136853-0
Seiten 286
Illustration XVIII, 286 p. 120 illus., 98 illus. in color.
Serien Lecture Notes in Mathematics
École d'Été de Probabilités de Saint-Flour
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.