Fr. 180.00

SPACE TIME CODING FOR BROADBAND WI

Englisch · Fester Einband

Versand in der Regel in 3 bis 5 Wochen

Beschreibung

Mehr lesen

Informationen zum Autor GEORGIOS B. GIANNAKIS , PhD, is ADC Endowed Chair Professor in Wireless Telecommunications with the Department of Electrical and Computer Engineering at the University of Minnesota. He is a Fellow of the IEEE, a (co-)recipient of six IEEE best paper awards (including the IEEE Communication Society's 2004 Guglielmo Marconi Prize Paper), and a recipient of the IEEE Signal Processing Society's Technical Achievement Award. His interests and expertise span the areas of wireless communications, wireless networks, sensor networks, and statistical signal processing. ZHIQIANG LIU , PhD, is Assistant Professor with the Department of Electrical and Computer Engineering at the University of Iowa. His research interests include space-time coding and processing, wireless communications theory, synchronization, channel estimation, and sensor networks. XIAOLI MA , PhD, is Assistant Professor with the School of Electrical and Computer Engineering at the Georgia Institute of Technology. Her research interests include signal processing for communications and networking, signal estimation algorithms, wireless communications theory, and sensor networks. SHENGLI ZHOU , PhD, is Assistant Professor with the Department of Electrical and Computer Engineering at the University of Connecticut. His research interests include wireless communications and signal processing, underwater acoustic communications and networking, and wireless positioning and synchronization. Klappentext Eine vielversprechende Technologie zur Maximierung der Bandbreiteneffizienz in der breitbandigen drahtlosen Kommunikation ist die Raum-Zeit-Kodierung. Theorie und Praxis verbindend, ist dieses Buch die erste umfassende Diskussion von Grundlagen und designorientierten Aspekten von Raum-Zeit-Codes. Single-Carrier und Multi-Carrier-Übertragungen für Einzel- und Mehrnutzerkommunikation werden behandelt. Zusammenfassung The next generation of wireless communications systems will offer practically unlimited mobility and high data-rate services such as streaming video. In order to provide these capabilities, wireless networks will need to have extremely high bandwidth efficiency. One of the most promising techniques for ensuring this efficiency is space-time coding. Inhaltsverzeichnis Preface. Acronyms. 1. Motivation and Context. 1.1 Evolution of Wireless Communication Systems. 1.2 Wireless Propagation Effects. 1.3 Parameters and Classification of Wireless Channels. 1.3.1 Delay Spread and Coherence Bandwidth. 1.3.2 Doppler Spread and Coherence Time. 1.4 Providing, Enabling and Collecting Diversity. 1.4.1 Diversity Provided by Frequency-Selective Channels. 1.4.2 Diversity Provided by Time-Selective Channels. 1.4.3 Diversity Provided by Multi-Antenna Channels. 1.5 Chapter-by-Chapter Organization. 2. Fundamentals of ST Wireless Communications. 2.1 Generic ST System Model. 2.2 ST Coding viz Channel Coding. 2.3 Capacity of ST Channels. 2.3.1 Outage Capacity. 2.3.2 Ergodic Capacity. 2.4 Error Performance of ST Coding. 2.5 Design Criteria for ST Codes. 2.6 Diversity and Rate: Finite SNR viz Asymptotics. 2.7 Classification of ST Codes. 2.8 Closing Comments. 3. Coherent ST Codes for Flat Fading Channels. 3.1 Delay Diversity ST Codes. 3.2 ST Trellis Codes. 3.2.1 Trellis Representation. 3.2.2 TSC ST Trellis Codes. 3.2.3 BBH ST Trellis Codes. 3.2.4 GFK ST Trellis Codes. 3.2.5 Viterbi Decoding of ST Trellis Codes. 3.3 Orthogonal ST Block Codes. 3.3.1 Encoding of OSTBCs. 3.3.2 Linear ML Decoding of OSTBCs. 3.3.3 BER Performance with OSTBCs. 3.3.4 Channel Capacity with OSTBCs. 3.4 Quasi-Orthogonal ST Block Codes. 3.5 ST Linear Complex Field Codes. 3.5.1 Antenna Switching and Linear Precoding. 3.5.2 Designing Linear Precoding Matrices. 3.5.3 Upper-Bound on Coding Gain. 3.5.4 Construction based on Parameterization. 3.5.5 Construction ...

Inhaltsverzeichnis

Preface.
 
Acronyms.
 
1. Motivation and Context.
 
1.1 Evolution of Wireless Communication Systems.
 
1.2 Wireless Propagation Effects.
 
1.3 Parameters and Classification of Wireless Channels.
 
1.4 Providing, Enabling and Collecting Diversity.
 
1.5 Chapter-by-Chapter Organization.
 
2. Fundamentals of ST Wireless Communications.
 
2.1 Generic ST System Model.
 
2.2 ST Coding viz Channel Coding.
 
2.3 Capacity of ST Channels.
 
2.4 Error Performance of ST Coding.
 
2.5 Design Criteria for ST Codes.
 
2.6 Diversity and Rate: Finite SNR viz Asymptotics.
 
2.7 Classification of ST Codes.
 
2.8 Closing Comments.
 
3. Coherent ST Codes for Flat Fading Channels.
 
3.1 Delay Diversity ST Codes.
 
3.2 ST Trellis Codes.
 
3.3 Orthogonal ST Block Codes.
 
3.4 Quasi-Orthogonal ST Block Codes.
 
3.5 ST Linear Complex Field Codes.
 
3.6 Linking OSTBC, QO-STBC and STLCFC Designs.
 
3.7 Closing Comments.
 
4. Layered ST Codes.
 
4.1 BLAST Designs.
 
4.2 ST Codes Trading Diversity for Rate.
 
4.3 Full-Diversity Full-Rate ST Codes.
 
4.4 Numerical Examples.
 
4.5 Closing Comments.
 
5. Sphere Decoding and (Near-) Optimal MIMO Demodulation.
 
5.1 Sphere Decoding Algorithm.
 
5.2 Average Complexity of SDA in Practice.
 
5.3 SDA Improvements.
 
5.4 Reduced-Complexity IRS-SDA.
 
5.5 Soft Decision Sphere Decoding.
 
5.6 Closing Comments.
 
6. Non-Coherent and Differential ST Codes for Flat Fading Channels.
 
6.1 Non-Coherent ST Codes.
 
6.2 Differential ST Codes.
 
6.3 Closing Comments.
 
7. ST Codes for Frequency-Selective Fading Channels: Single-Carrier Systems.
 
7.1 System Model and Performance Limits.
 
7.2 ST Trellis Codes.
 
7.3 ST Block Codes.
 
7.4 Closing Comments.
 
8. ST Codes for Frequency-Selective Fading Channels: Multi-Carrier Systems.
 
8.1 The General MIMO OFDM Framework.
 
8.2 ST and SF Coded MIMO OFDM.
 
8.3 STF Coded OFDM.
 
8.4 Digital Phase Sweeping and Block Circular Delay.
 
8.5 Full-Diversity Full-Rate MIMO OFDM.
 
8.6 Closing Comments.
 
9. ST Codes for Time-Varying Channels.
 
9.1 Time-Varying Channels.
 
9.2 Space-Time-Doppler Block Codes.
 
9.3 Space-Time-Doppler FDFR Codes.
 
9.4 Space-Time-Doppler Trellis Codes.
 
9.5 Numerical Examples.
 
9.6 Space-Time-Doppler Differential Codes.
 
9.7 ST Codes for Doubly-Selective Channels.
 
9.8 Closing Comments.
 
10. Joint Galois-Field and Linear Complex-Field ST Codes.
 
10.1 GF-LCF ST Codes.
 
10.2 GF-LCF ST Layered Codes.
 
10.3 GF-LCF Coded MIMO OFDM.
 
10.4 Closing Comments.
 
11. MIMO Channel Estimation and Synchronization.
 
11.1 Preamble-Based Channel Estimation.
 
11.2 Optimal Training-Based Channel Estimation.
 
11.3 (Semi-)Blind Channel Estimation.
 
11.4 Joint Symbol Detection and Channel Estimation.
 
11.5 Carrier Synchronization.
 
11.6 Closing Comments.
 
12. ST Codes with Partial Channel Knowledge: Statistical CSI.
 
12.1 Partial CSI Models.
 
12.2 ST Spreading.
 
12.3 Combining OSTBC with Beamforming.
 
12.4 Numerical Examples.
 
12.5 Adaptive Modulation for Rate Improvement.
 
12.6 Optimizing Average Capacity.
 
12.7 Closing Comments.
 
13. ST Codes With Partial

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.