Fr. 92.00

Lectures on Riemann Surfaces

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

This book grew out of lectures on Riemann surfaces which the author gave at the universities of Munich, Regensburg and Munster. Its aim is to give an introduction to this rich and beautiful subject, while presenting methods from the theory of complex manifolds which, in the special case of one complex variable, turn out to be particularly elementary and transparent. The book is divided into three chapters. In the first chapter we consider Riemann surfaces as covering spaces and develop a few basics from topology which are needed for this. Then we construct the Riemann surfaces which arise via analytic continuation of function germs. In particular this includes the Riemann surfaces of algebraic functions. As well we look more closely at analytic functions which display a special multi-valued behavior. Examples of this are the primitives of holomorphic i-forms and the solutions of linear differential equations. The second chapter is devoted to compact Riemann surfaces. The main classical results, like the Riemann-Roch Theorem, Abel's Theorem and the Jacobi inversion problem, are presented. Sheaf cohomology is an important technical tool. But only the first cohomology groups are used and these are comparatively easy to handle. The main theorems are all derived, following Serre, from the finite dimensionality of the first cohomology group with coefficients in the sheaf of holomorphic functions. And the proof of this is based on the fact that one can locally solve inhomogeneous Cauchy Riemann equations and on Schwarz' Lemma.

Inhaltsverzeichnis

1 Covering Spaces.-
1. The Definition of Riemann Surfaces.-
2. Elementary Properties of Holomorphic Mappings.-
3. Homotopy of Curves. The Fundamental Group.-
4. Branched and Unbranched Coverings.-
5. The Universal Covering and Covering Transformations.-
6. Sheaves.-
7. Analytic Continuation.-
8. Algebraic Functions.-
9. Differential Forms.-
10. The Integration of Differential Forms.-
11. Linear Differential Equations.- 2 Compact Riemann Surfaces.-
12. Cohomology Groups.- 13. Dolbeault's Lemma.-
14. A Finiteness Theorem.-
15. The Exact Cohomology Sequence.-
16. The Riemann-Roch Theorem.-
17. The Serre Duality Theorem.-
18. Functions and Differential Forms with Prescribed Principal Parts.-
19. Harmonic Differential Forms.-
20. Abel's Theorem.-
21. The Jacobi Inversion Problem.- 3 Non-compact Riemann Surfaces.-
22. The Dirichlet Boundary Value Problem.-
23. Countable Topology.-
24. Weyl's Lemma.-
25. The Runge Approximation Theorem.-
26. The Theorems of Mittag-Leffler and Weierstrass.-
27. The Riemann Mapping Theorem.-
28. Functions with Prescribed Summands of Automorphy.-
29. Line and Vector Bundles.-
30. The Triviality of Vector Bundles.-
31. The Riemann-Hilbert Problem.- A. Partitions of Unity.- B. Topological Vector Spaces.- References.- Symbol Index.- Author and Subject Index.

Über den Autor / die Autorin

Dr. Otto Forster ist Professor am Mathematischen Institut der Ludwig-Maximilians-Universität München und Autor der bekannten Lehrbücher Analysis 1-3.

Zusammenfassung

This book grew out of lectures on Riemann surfaces which the author gave at the universities of Munich, Regensburg and Munster. In the first chapter we consider Riemann surfaces as covering spaces and develop a few basics from topology which are needed for this.

Bericht

O. Forster and B. Gilligan
Lectures on Riemann Surfaces
"A very attractive addition to the list in the form of a well-conceived and handsomely produced textbook based on several years' lecturing experience . . . This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces. The reviewer is inclined to think that it may well become a favorite."-MATHEMATICAL REVIEWS

Produktdetails

Autoren Otto Forster
Mitarbeit Bruce Gilligan (Herausgeber), Bruce Gilligan (Übersetzung)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 02.05.2001
 
EAN 9780387906171
ISBN 978-0-387-90617-1
Seiten 256
Abmessung 157 mm x 243 mm x 21 mm
Gewicht 530 g
Illustration VIII, 256 p.
Serien Graduate Texts in Mathematics
Graduate Texts in Mathematics
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.