Fr. 176.40

Types, Tableaus, and Gödel's God

Englisch · Fester Einband

Versand in der Regel in 3 bis 5 Wochen (Titel wird speziell besorgt)

Beschreibung

Mehr lesen

Gödel's modal ontological argument is the centerpiece of an extensive examination of intensional logic. First, classical type theory is presented semantically, tableau rules for it are introduced, and the Prawitz/Takahashi completeness proof is given. Then modal machinery is added to produce a modified version of Montague/Gallin intensional logic. Finally, various ontological proofs for the existence of God are discussed informally, and the Gödel argument is fully formalized. Parts of the book are mathematical, parts philosophical.

Inhaltsverzeichnis

Preface. Part I: Classical Logic. 1. Classical Logic - Syntax. 2. Classical Logic - Semantics. 3. Classical Logic - Basic Tableaus. 4. Soundness and Completeness. 5. Equality. 6. Extensionality. Part II: Modal Logic. 7. Modal Logic, Syntax and Semantics. 8. Modal Tableaus. 9. Miscellaneous Matters. Part III: Ontological Arguments. 10. Gödel's Argument, Background. 11. Gödel's Argument, Formally. References. Index.

Zusammenfassung

Gödel's modal ontological argument is the centrepiece of an extensive examination of intensional logic. First, classical type theory is presented semantically, tableau rules for it are introduced, and the Prawitz/Takahashi completeness proof is given. Then modal machinery is added, semantically and through tableau rules, to produce a modified version of Montague/Gallin intensional logic. Extensionality, rigidity, equality, identity, and definite descriptions are investigated. Finally, various ontological proofs for the existence of God are discussed informally, and the Gödel argument is fully formalized. Objections to the Gödel argument are examined, including one due to Howard Sobel showing Gödel's assumptions are so strong that the modal logic collapses. It is shown that this argument depends critically on whether properties are understood intensionally or extensionally.
Parts of the book are mathematical, parts philosophical. A reader interested in (modal) type theory can safelyskip ontological issues, just as one interested in Gödel's argument can omit the more mathematical portions, such as the completeness proof for tableaus. There should be something for everybody (and perhaps everything for somebody).

Produktdetails

Autoren M Fitting, M. Fitting, Melvin Fitting
Verlag Springer Netherlands
 
Sprache Englisch
Produktform Fester Einband
Erschienen 01.02.2011
 
EAN 9781402006043
ISBN 978-1-4020-0604-3
Seiten 181
Gewicht 461 g
Illustration XV, 181 p.
Serien Trends in Logic
Trends in Logic
Themen Geisteswissenschaften, Kunst, Musik > Philosophie > Allgemeines, Lexika
Sachbuch > Philosophie, Religion > Sonstiges

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.