Fr. 80.00

Analysis of Incomplete Multivariate Data

Englisch · Taschenbuch

Versand in der Regel in 1 bis 3 Wochen (kurzfristig nicht lieferbar)

Beschreibung

Mehr lesen

The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis.

Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms.

All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.

Inhaltsverzeichnis

Introduction Assumptions EM and Inference by Data Augmentation Methods for Normal Data More on the Normal Model Methods for Categorical Data Loglinear Models Methods for Mixed Data Further Topics Appendices References Index

Über den Autor / die Autorin

J.L. Schafer

Zusammenfassung

The author focuses on applications, as necessary, to help readers thoroughly understand the statistical properties of the methods and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, complemented by extended discussions and practical advice.

Bericht

"Overall, the book provides a sound basis on which one can build when dealing with real data...I take pleasure in recommending this well-written text."
-Rainer Schlittgen in Statistical Papers
"This book provides an excellent introduction to statistical inference...Thanks to the clear and relatively complete treatment of many of the main ideas in this area, even theoretically oriented readers may find this book worthwhile."
-Mark Steel, Mathematical Reviews

Produktdetails

Autoren J.L. Schafer, J.l. (Penn State University Schafer
Mitarbeit D.R. Cox (Herausgeber der Reihe), Valerie Isham (Herausgeber der Reihe), Niels Keiding (Herausgeber der Reihe), Thomas A. Louis (Herausgeber der Reihe), N. Reid (Herausgeber der Reihe), Howell Tong (Herausgeber der Reihe)
Verlag Taylor & Francis Ltd.
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 21.01.2023
 
EAN 9781032477992
ISBN 978-1-0-3247799-2
Seiten 444
Serie Chapman & Hall/CRC Monographs on Statistics and Applied Probability
Themen Naturwissenschaften, Medizin, Informatik, Technik > Medizin > Allgemeines

Epidemiology & medical statistics, MATHEMATICS / Probability & Statistics / General, MEDICAL / Biostatistics, Probability & statistics, Probability and statistics, Epidemiology and Medical statistics

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.