Fr. 134.00

The Couette-Taylor Problem

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

This book presents a systematic and unified approach to the nonlinear stability problem and transitions in the Couette-Taylor problem, by the means of analytic and constructive methods. The most "elementary" one-parameter theory is first presented with great detail. More complex situations are then analyzed (mode interactions, imperfections, non-spatially periodic patterns). The whole analysis is based on the mathematically rigorous theory of center manifold and normal forms, and symmetries are fully taken into account. These methods are very general and can be applied to other hydrodynamical instabilities, or more generally to physical problems modelled by partial differential equations. Non-mathematician readers can skip the mathematically "hard" parts of the book and still catch the ideas and results. This book is primarily intended for graduate students and researchers in fluid mechanics, and more generally for applied mathematicians and physicists who are interested in the analysis of instabilities in systems governed by partial differential equations.

Inhaltsverzeichnis










I Introduction.- I.1 A paradigm.- I.2 Experimental results.- I.3 Modeling for theoretical analysis.- I.4 Arrangements of topics in the text.- II Statement of the Problem and Basic Tools.- II.1 Nondimensionalization, parameters.- II.2 Functional frame and basic properties.- II.3 Linear stability analysis.- II.4 Center Manifold Theorem.- III Taylor Vortices, Spirals and Ribbons.- III.1 Taylor vortex flow.- III.2 Spirals and ribbons.- III.3 Higher codimension bifurcations.- IV Mode Interactions.- IV.1 Interaction between an axisymmetric and a nonaxisymmetric mode.- IV.2 Interaction between two nonaxisymmetric modes.- V Imperfections on Primary Bifurcations.- V.1 General setting when the geometry of boundaries is perturbed.- V.2 Eccentric cylinders.- V.3 Little additional flux.- V.4 Periodic modulation of the shape of cylinders in the axial direction.- V.5 Time-periodic perturbation.- VI Bifurcation from Group Orbits of Solutions.- VI.1 Center manifold for group orbits.- VI.2 Bifurcation from the Taylor vortex flow.- VI.3 Bifurcation from the spirals.- VI.4 Bifurcation from ribbons.- VI.5 Bifurcation from wavy vortices, modulated wavy vortices.- VI.6 Codimension-two bifurcations from Taylor vortex flow.- VII Large-scale EfTects.- VII. 1 Steady solutions in an infinite cylinder.- VII.2 Time-periodic solutions in an infinite cylinder.- VII.3 Ginzburg-Landau equation.- VIII Small Gap Approximation.- VIII.1 Introduction.- VIII.2 Choice of scales and limiting system.- VIII.3 Linear stability analysis.- VIII.4 Ginzburg-Landau equations.

Zusammenfassung

At least when O is not too large, the fluid flow is nearly laminar and 2 the method of Couette is valuable because the torque is then proportional to 110 , where II is the kinematic viscosity of the fluid.

Produktdetails

Autoren Pasca Chossat, Pascal Chossat, Gerard Iooss, Gérard Iooss
Verlag Springer New York
 
Sprache Englisch
Produktform Fester Einband
Erschienen 11.03.1994
 
EAN 9780387941547
ISBN 978-0-387-94154-7
Seiten 248
Abmessung 160 mm x 241 mm x 20 mm
Gewicht 539 g
Serie Applied Mathematical Sciences
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.