Fr. 230.40

Evolutionary Synthesis of Pattern Recognition Systems

Englisch · Fester Einband

Versand in der Regel in 3 bis 5 Wochen (Titel wird speziell besorgt)

Beschreibung

Mehr lesen

Evolutionary computation is becoming increasingly important for computer vision and pattern recognition and provides a systematic way of synthesis and analysis of object detection and recognition systems. Incorporating "learning" into recognition systems will enable these systems to automatically generate new features on the fly and cleverly select a good subset of features according to the type of objects and images to which they are applied.
This unique monograph investigates evolutionary computational techniques--such as genetic programming, linear genetic programming, coevolutionary genetic programming and genetic algorithms--to automate the synthesis and analysis of object detection and recognition systems.
The purpose of incorporating learning into the system design is to avoid the time-consuming process of feature generation and selection and to reduce the cost of building object detection and recognition systems.
Researchers, professionals, engineers, and students working in computer vision, pattern recognition, target recognition, machine learning, evolutionary learning, image processing, knowledge discovery and data mining, cybernetics, robotics, automation and psychology will find this well-developed and organized volume an invaluable resource.

Inhaltsverzeichnis

Feature Synthesis for Object Detection.- Mdl-Based Efficient Genetic Programming for Object Detection.- Feature Selection for Object Detection.- Evolutionary Feature Synthesis for Object Recognition.- Linear Genetic Programming for Object Recognition.- Applications of Linear Genetic Programming for Object Recognition.- Summary and Future Work.

Zusammenfassung

Evolutionary computation is becoming increasingly important for computer vision and pattern recognition. It provides a systematic way of synthesizing and analyzing object detection and pattern recognition systems. Incorporating "learning" into recognition systems will enable these systems to automatically generate new features on the fly (evolve) and cleverly select a good subset of features according to the type of objects and images to which they are applied. This book investigates evolutionary computational techniques---such as genetic programming, linear genetic programming, coevolutionary genetic programming and genetic algorithms---to automate the synthesis and analysis of object detection and recognition systems.

Produktdetails

Autoren B. Bhanu, Bi Bhanu, Bir Bhanu, Chris Krawiec, K. Krawiec, Krzysztof Krawiec, Y. Lin, Yingqian Lin, Yingqiang Lin
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 13.04.2005
 
EAN 9780387212951
ISBN 978-0-387-21295-1
Seiten 296
Abmessung 156 mm x 241 mm x 24 mm
Gewicht 648 g
Illustration XXIV, 296 p. 95 illus.
Serien Monographs in Computer Science
Monographs in Computer Science
Thema Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Anwendungs-Software

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.