Fr. 46.90

Data-Science-Crashkurs - Eine interaktive und praktische Einführung

Deutsch · Taschenbuch

Versand in der Regel in 4 bis 7 Arbeitstagen

Beschreibung

Mehr lesen

  • Praxisnaher Einstieg mit anschaulichen Erklärungen und zahlreichen Anwendungsbeispielen, unterstützt durch interaktive Elemente
  • Für alle, die mehr über die Möglichkeiten der Datenanalyse lernen wollen, ohne gleich tief in die Theorie oder bestimmte Methoden einzusteigen
»Data-Science-Crashkurs« bietet einen praxisnahen Einstieg in Data Science, angereichert mit interaktiven Elementen, der die Breite der Möglichkeiten der Datenanalyse aufzeigt. Dieses Buch geht tief genug, um Vorteile, Nachteile und Risiken zu verstehen, aber steigt dennoch nicht zu tief in die zugrunde liegende Mathematik ein. Es wird nicht nur erklärt, wofür wichtige Begriffe wie Big Data, machinelles Lernen oder Klassifikation stehen, sondern auch anschaulich mit zahlreichen Beispielen aufgezeigt, wie Daten analysiert werden. Ein breiter Überblick über Analysemethoden vermittelt das nötige Wissen, um in eigenen Projekten geeignete Methoden auszuwählen und anzuwenden, um das gewünschte Ergebnis zu erreichen.
Der benötigte Python-Quelltext, der z.B. zur Durchführung von Analysen oder zur Erstellung von Visualisierungen verwendet wird, ist in Form von Jupyter-Notebooks frei verfügbar.

Über den Autor / die Autorin

Dr. Steffen Herbold ist Professor für Methoden und Anwendungen maschinellen Lernens am Institut für Software und Systems Engineering der Technischen Universität Clausthal, wo er die Forschungsgruppe AI Engineering leitet. Zuvor hat er an der Universität Göttingen promoviert und habilitiert und am Karlsruher Institut für Technologie einen Lehrstuhl vertreten. In der Forschung beschäftigt er sich mit der Entwicklung und Qualitätssicherung der Lösung von Problemen durch maschinelles Lernen, z.B. zur effizienteren Softwareentwicklung, der Prognose von Ernteerträgen oder auch der Erkennung von aeroakustischen Geräuschquellen.

Zusammenfassung

Data Science praxisnah erklärt

  • Praxisnaher Einstieg mit anschaulichen Erklärungen und zahlreichen Anwendungsbeispielen, unterstützt durch interaktive Elemente
  • Für alle, die mehr über die Möglichkeiten der Datenanalyse lernen wollen, ohne gleich tief in die Theorie oder bestimmte Methoden einzusteigen
»Data-Science-Crashkurs« bietet einen praxisnahen Einstieg in Data Science, angereichert mit interaktiven Elementen, der die Breite der Möglichkeiten der Datenanalyse aufzeigt. Dieses Buch geht tief genug, um Vorteile, Nachteile und Risiken zu verstehen, aber steigt dennoch nicht zu tief in die zugrunde liegende Mathematik ein. Es wird nicht nur erklärt, wofür wichtige Begriffe wie Big Data, machinelles Lernen oder Klassifikation stehen, sondern auch anschaulich mit zahlreichen Beispielen aufgezeigt, wie Daten analysiert werden. Ein breiter Überblick über Analysemethoden vermittelt das nötige Wissen, um in eigenen Projekten geeignete Methoden auszuwählen und anzuwenden, um das gewünschte Ergebnis zu erreichen.
Der benötigte Python-Quelltext, der z.B. zur Durchführung von Analysen oder zur Erstellung von Visualisierungen verwendet wird, ist in Form von Jupyter-Notebooks frei verfügbar.

Produktdetails

Autoren Steffen Herbold
Verlag dpunkt
 
Sprache Deutsch
Produktform Taschenbuch
Erschienen 10.01.2022
 
EAN 9783864908620
ISBN 978-3-86490-862-0
Seiten 330
Abmessung 170 mm x 20 mm x 230 mm
Gewicht 662 g
Illustration komplett in Farbe
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Programmiersprachen

Statistik, Mathematik, Algorithmen, Datenanalyse, Wahrscheinlichkeit, KI, Data Science, Big Data, python, machine learning, Data Mining, Deep Learning, Neuronale Netze, Machinelles Lernen, Jupyter-Notebook

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.