Mehr lesen
Explains and relates different methods of confounding adjustment in terms of potential outcomes and graphical models, including standardization, difference-in-differences estimation, the front-door method, instrumental variables estimation, and propensity score methods.
Inhaltsverzeichnis
1. Introduction. 2. Conditional Probability and Expectation. 3. Potential Outcomes and the Fundamental Problem of Causal Inference. 4. Effect-measure Modification and Causal Interaction. 5. Causal Directed Acyclic Graphs. 6. Adjusting for Confounding: Back-door method via Standardization. 7. Adjusting for Confounding: Difference-in-Differences Estimators. 8. Adjusting for Confounding: Front-door method. 9. Adjusting for Confounding: Instrumental Variables. 10. Adjusting for Confounding: Propensity-score Methods. 11. Efficiency with Precision Variables. 12. Mediation.
Über den Autor / die Autorin
Babette A. Brumback is Professor and Associate Chair for Education in the Department of Biostatistics at the University of Florida; she won the department’s Outstanding Teacher Award for 2020-2021. A Fellow of the American Statistical Association, she has researched and applied methods for causal inference since 1998, specializing in methods for time-dependent confounding, complex survey samples and clustered data.
Zusammenfassung
Explains and relates different methods of confounding adjustment in terms of potential outcomes and graphical models, including standardization, difference-in-differences estimation, the front-door method, instrumental variables estimation, and propensity score methods.
Zusatztext
"I would definitely consider adopting this book for my class, especially for the introduction to the history of causal inference, the fundamental problem of causal inference, and graphical models. I think it compares favorably to competing books, particularly in that I think it does a nice job referencing different causal inference frameworks." (Edward Kennedy, Carnegie Mellon University)
"This textbook would be ideal for our department’s introductory course in causal methods which targets MS students in Epidemiology and Health Policy. I would even consider using this textbook in my PhD level Causal Inference course for Biostatistics students as a supplement because of its great R code and excellent data examples...The text is very clear and presents concepts in an accessible way. It is in fact much more accessible than current textbooks I’ve used. It is well organized and builds on concepts nicely throughout. Again, I think the R code is a huge plus. There is also very little reliance on any advanced math. Understanding probabilities and conditional expectations is all that is needed to fully appreciate this textbook." (Nandita Mitra, University of Pennsylvania)
"This is a timely book on a topic that’s becoming ever more popular, for both methodological and applied researchers. the book would be a good one for undergrad majors in statistics and related fields, and at the same time some graduate students and researchers etc." (Ronghui Xu, University of California San Diego)