Fr. 58.90

Algorithms for Convex Optimization

Englisch · Taschenbuch

Versand in der Regel in 3 bis 5 Wochen

Beschreibung

Mehr lesen










Algorithms for Convex Optimization are the workhorses of data-driven, technological advancements in machine learning and artificial intelligence. This concise, modern guide to deriving these algorithms is self-contained and accessible to advanced students, practitioners, and researchers in computer science, operations research, and data science.

Inhaltsverzeichnis










1. Bridging continuous and discrete optimization; 2. Preliminaries; 3. Convexity; 4. Convex optimization and efficiency; 5. Duality and optimality; 6. Gradient descent; 7. Mirror descent and multiplicative weights update; 8. Accelerated gradient descent; 9. Newton's method; 10. An interior point method for linear programming; 11. Variants of the interior point method and self-concordance; 12. Ellipsoid method for linear programming; 13. Ellipsoid method for convex optimization.

Über den Autor / die Autorin

Nisheeth K. Vishnoi is a Professor of Computer Science at Yale University. His research areas include theoretical computer science, optimization, and machine learning. He is a recipient of the Best Paper Award at IEEE FOCS in 2005, the IBM Research Pat Goldberg Memorial Award in 2006, the Indian National Science Academy Young Scientist Award in 2011, and the Best Paper award at ACM FAccT in 2019. He was elected an ACM Fellow in 2019. He obtained a bachelor degree in Computer Science and Engineering from IIT Bombay and a Ph.D. in Algorithms, Combinatorics and Optimization from Georgia Institute of Technology.

Zusammenfassung

Algorithms for Convex Optimization are the workhorses of data-driven, technological advancements in machine learning and artificial intelligence. This concise, modern guide to deriving these algorithms is self-contained and accessible to advanced students, practitioners, and researchers in computer science, operations research, and data science.

Zusatztext

'Vishnoi's book provides an exceptionally good introduction to convex optimization for students and researchers in computer science, operations research, and discrete optimization. The book gives a comprehensive introduction to classical results as well as to some of the most recent developments. Concepts and ideas are introduced from first principles, conveying helpful intuitions. There is significant emphasis on bridging continuous and discrete optimization, in particular, on recent breakthroughs on flow problems using convex optimization methods; the book starts with an enlightening overview of the interplay between these areas.' László Végh, LSE

Produktdetails

Autoren Nisheeth K. Vishnoi, Nisheeth K. (Yale University Vishnoi
Verlag Cambridge University Press ELT
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 31.07.2021
 
EAN 9781108741774
ISBN 978-1-108-74177-4
Seiten 200
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Programmiersprachen

Optimization, COMPUTERS / General, algorithms and data structures, Algorithms & data structures

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.