Fr. 166.00

Variations on a Theme of Borel - An Essay on the Role of the Fundamental Group in Rigidity

Englisch · Fester Einband

Versand in der Regel in 3 bis 5 Wochen

Beschreibung

Mehr lesen










Shmuel Weinberger describes here analogies between geometric topology, differential geometry, group theory, global analysis, and noncommutative geometry. He develops deep tools in a setting where they have immediate application. The connections between these fields enrich each and shed light on one another.

Inhaltsverzeichnis










1. Introduction; 2. Examples of aspherical manifolds; 3. First contact - The proper category; 4. How can it be true?; 5. Playing the Novikov game; 6. Equivariant Borel conjecture; 7. Existential problems; 8. Epilogue - A survey of some techniques; References; Index.

Über den Autor / die Autorin

Shmuel Weinberger is Andrew MacLeish Professor of Mathematics at the University of Chicago. His work is on geometry and topology and their applications. To Weinberger, the only thing cooler than discovering some new geometric result (by any method from any area of mathematics) is discovering a hidden geometric side to the seemingly 'ungeometric'. He has written two other books, one on stratified spaces, and the other on the large-scale structure of spaces of Riemannian metrics using tools from logic. An inaugural Fellow of the American Mathematical Society, he is also a Fellow of the American Academy for the Advancement of Science.

Zusammenfassung

Shmuel Weinberger describes here analogies between geometric topology, differential geometry, group theory, global analysis, and noncommutative geometry. He develops deep tools in a setting where they have immediate application. The connections between these fields enrich each and shed light on one another.

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.