Fr. 135.00

Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This thesis demonstrates a full Mach-Zehnder interferometer with interacting Bose-Einstein condensates confined on an atom chip. It relies on the coherent manipulation of atoms trapped in a magnetic double-well potential, for which the author developed a novel type of beam splitter. Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices, both for technological applications and fundamental tests. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners.
Particle interactions in the Bose-Einstein condensate lead to a nonlinearity, absent in photon optics. This is exploited to generate a non-classical state with reduced atom-number fluctuations inside the interferometer. This state is then used to study the interaction-induced dephasing of the quantum superposition. The resulting coherence times are found to be a factor of three longer than expected for coherent states, highlighting the potential of entanglement as a resource for quantum-enhanced metrology.

Inhaltsverzeichnis

Introduction.- Theoretical Framework.- Experimental Setup and Techniques.- A Mach-Zehnder Interferometer for Trapped, Interacting Bose-Einstein Condensates.- Outlook: Bosonic Josephson Junctions Beyond the Two-Mode Approximation.

Über den Autor / die Autorin

Tarik Berrada studied physics and applied mathematics in Paris and Vienna. In 2009, he joined the group of Jörg Schmiedmayer at the Vienna University of Technology and worked for his PhD thesis on interferometry with trapped atomic Bose-Einstein condensates. After a post-doc in the same group, Tarik Berrada is now working on developing new forecast models for the energy market.

Zusammenfassung

This thesis demonstrates a full Mach–Zehnder interferometer with interacting Bose–Einstein condensates confined on an atom chip. It relies on the coherent manipulation of atoms trapped in a magnetic double-well potential, for which the author developed a novel type of beam splitter. Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices, both for technological applications and fundamental tests. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners.
Particle interactions in the Bose–Einstein condensate lead to a nonlinearity, absent in photon optics. This is exploited to generate a non-classical state with reduced atom-number fluctuations inside the interferometer. This state is then used to study the interaction-induced dephasing of the quantum superposition. The resulting coherence times are found to be a factor of three longer than expected for coherent states, highlighting the potential of entanglement as a resource for quantum-enhanced metrology.

Produktdetails

Autoren Tarik Berrada
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2019
 
EAN 9783319800974
ISBN 978-3-31-980097-4
Seiten 229
Abmessung 156 mm x 236 mm x 15 mm
Gewicht 412 g
Illustration XIX, 229 p. 89 illus., 67 illus. in color.
Serien Springer Theses
Springer Theses
Themen Naturwissenschaften, Medizin, Informatik, Technik > Physik, Astronomie > Theoretische Physik

B, Tieftemperaturphysik, Quantum physics (quantum mechanics & quantum field theory), Physics and Astronomy, Quantum computers, Spintronics, Quantum Information Technology, Spintronics, Low Temperature Physics, Low temperatures, Condensed materials, Phase transformations (Statistical physics), Quantum Gases and Condensates

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.