Fr. 169.00

Linear and Quasilinear Parabolic Problems - Volume II: Function Spaces

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets.
It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems.
The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant - in the realm of stochastic differential equations, for example.


Inhaltsverzeichnis

Restriction-Extension Pairs.- Sequence Spaces.- Anisotropy.- Classical Spaces.- Besov Spaces.- Intrinsic Norms, Slobodeckii and Hölder Spaces.- Bessel Potential Spaces.- Triebel-Lizorkin Spaces.- Point-Wise Multiplications.- Compactness.- Parameter-Dependent Spaces.

Zusammenfassung

This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets.
It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems.
The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant – in the realm of stochastic differential equations, for example.

Produktdetails

Autoren Herbert Amann
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 01.01.2019
 
EAN 9783030117627
ISBN 978-3-0-3011762-7
Seiten 462
Abmessung 157 mm x 239 mm x 241 mm
Gewicht 890 g
Illustration XVI, 462 p.
Serien Monographs in Mathematics
Monographs in Mathematics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

B, Mathematics and Statistics, Functional Analysis, Besov Spaces, Anisotropy, Sequence Spaces

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.