Fr. 179.00

Genetic Programming Theory and Practice XVI

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen


These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolving developmental programs for neural networks solving multiple problems, tangled program, transfer learning and outlier detection using GP, program search for machine learning pipelines in reinforcement learning, automatic programming with GP, new variants of GP, like SignalGP, variants of lexicase selection, and symbolic regression and classification techniques. The volume includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.

Inhaltsverzeichnis

1 Exploring Genetic Programming Systems with MAP-Elites.- 2 The Evolutionary Buffet Method.- 3 Emergent Policy Discovery for Visual Reinforcement Learning through Tangled Program Graphs: A Tutorial.- 4 Strong Typing, Swarm Enhancement, and Deep Learning Feature Selection in the Pursuit of Symbolic Regression-Classification.- 5 Cluster Analysis of a Symbolic Regression Search Space.- 6 What else is in an evolved name? Exploring evolvable specificity with SignalGP.- Lexicase Selection Beyond Genetic Programming.- 8 Evolving developmental programs that build neural networks for solving multiple problems.- 9 The Elephant in the Room - Towards the Application of Genetic Programming to Automatic Programming.- 10 Untapped Potential of Genetic Programming: Transfer Learning and Outlier Removal.- 11 Program Search for Machine Learning Pipelines Leveraging Symbolic Planning and Reinforcement Learning.

Zusammenfassung

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolving developmental programs for neural networks solving multiple problems, tangled program, transfer learning and outlier detection using GP, program search for machine learning pipelines in reinforcement learning, automatic programming with GP, new variants of GP, like SignalGP, variants of lexicase selection, and symbolic regression and classification techniques. The volume includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.

Produktdetails

Mitarbeit Wolfgang Banzhaf (Herausgeber), Leigh Sheneman (Herausgeber), Le Spector (Herausgeber), Lee Spector (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 01.01.2019
 
EAN 9783030047344
ISBN 978-3-0-3004734-4
Seiten 234
Abmessung 159 mm x 242 mm x 18 mm
Gewicht 566 g
Illustration XXI, 234 p. 65 illus., 47 illus. in color.
Serien Genetic and Evolutionary Computation
Genetic and Evolutionary Computation
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Informatik

B, Algorithmen und Datenstrukturen, Algorithms, Artificial Intelligence, Deep Learning, computer science, data analysis, Theory of Computation, Algorithms & data structures, Computational Intelligence, Algorithm Analysis and Problem Complexity, Symbolic Classification

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.