Fr. 189.00

Foliation Theory in Algebraic Geometry

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.
Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of psuedoeffective codimension one distributions.
Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geometry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study.

Inhaltsverzeichnis

On Fano Foliations 2.- Rational Curves on Foliated Varieties.- Local Structure of Closed Symmetric 2-Differentials.- Aspects of the Geometry of Varieties with Canonical Singularities.- Geometric Structures and Substructures on Uniruled Projective Manifolds.- Foliations, Shimura Varieties and the Green-Griffiths-Lang Conjecture.- On the Structure of Codimension I Foliations with Pseudoeffective Conormal Bundle.

Über den Autor / die Autorin










Paolo CasciniDepartment of Mathematics, Imperial College London, London SW72AZ, UKE-mail address: p.cascini@imperial.ac.uk
James McKernanDepartment of Mathematics, University of California, San Diego,9500 Gilman Drive # 0112, La Jolla, CA 92093-0112, USAE-mail address: jmckernan@math.ucsd.edu
Jorge Vitorio PereiraIMPA, Estrada Dona Casto

Zusammenfassung

Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of psuedoeffective codimension one distributions.Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geometry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study.

Produktdetails

Mitarbeit Paolo Cascini (Herausgeber), Jame McKernan (Herausgeber), James Mckernan (Herausgeber), Jorge Vitório Pereira (Herausgeber), Jorge Vitório Pereira (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2018
 
EAN 9783319796321
ISBN 978-3-31-979632-1
Seiten 216
Abmessung 156 mm x 14 mm x 237 mm
Gewicht 353 g
Illustration VII, 216 p. 4 illus.
Serien Simons Symposia
Simons Symposia
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Arithmetik, Algebra

C, Mathematics and Statistics, Algebraic Geometry, Projective Manifolds, Rational Curves, foliation

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.