Fr. 134.00

IMPROVE - Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency - Intelligent Methods for the Factory of the Future

Englisch · Taschenbuch

Versand in der Regel in 1 bis 2 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

This open access work presents selected results from the European research and innovation project IMPROVE which yielded novel data-based solutions to enhance machine reliability and efficiency in the fields of simulation and optimization, condition monitoring, alarm management, and quality prediction.

Inhaltsverzeichnis

Concept and Implementation of a Software Architecture for Unifying Data Transfer in Automated Production Systems.- Social Science Contributions to Engineering Projects: Looking Beyond Explicit Knowledge Through the Lenses of Social Theory.- Enable learning of Hybrid Timed Automata in Absence of Discrete Events through Self-Organizing Maps.- Anomaly Detection and Localization for Cyber-Physical Production Systems with Self-Organizing Maps.- A Sampling-Based Method for Robust and Efficient Fault Detection in Industrial Automation Processes.- Validation of similarity measures for industrial alarm flood analysis.- Concept for Alarm Flood Reduction with Bayesian Networks by Identifying the Root Cause.

Über den Autor / die Autorin

Prof. Dr. Oliver Niggemann is Professor for Artificial Intelligence in Automation. His research interests are in the fields of machine learning and data analysis for Cyber-Physical Systems and in the fields of planning and diagnosis of distributed systems. He is a board member of the research institute inIT and deputy director at the Fraunhofer Application Center Industrial Automation INA located in Lemgo.

Dr. Peter Schüller is postdoctoral researcher at Technische Universität Wien. His research interests are hybrid reasoning systems that combine Knowledge Representation and Machine Learning and applications in the fields of Cyber-Physical systems and Natural Language Processing.



Zusammenfassung

This open access work presents selected results from the European research and innovation project IMPROVE which yielded novel data-based solutions to enhance machine reliability and efficiency in the fields of simulation and optimization, condition monitoring, alarm management, and quality prediction.

Produktdetails

Mitarbeit Olive Niggemann (Herausgeber), Oliver Niggemann (Herausgeber), Schüller (Herausgeber), Schüller (Herausgeber), Peter Schüller (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2018
 
EAN 9783662578049
ISBN 978-3-662-57804-9
Seiten 129
Abmessung 167 mm x 9 mm x 240 mm
Gewicht 249 g
Illustration VII, 129 p. 52 illus., 29 illus. in color.
Serien Technologien für die intelligente Automation
Technologien für die intelligente Automation
Themen Naturwissenschaften, Medizin, Informatik, Technik > Physik, Astronomie

C, Robotics, Automation, engineering, quality control, Industrial and Production Engineering, reliability, Control, Robotics, Automation, Industrial safety, Quality Control, Reliability, Safety and Risk, Robotics and Automation, Computer networking & communications, Distributed databases, Input/Output and Data Communications, Input-output equipment (Computers)

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.