Mehr lesen
Informationen zum Autor John Hattie, PhD, is an award-winning education researcher and best-selling author with nearly thirty years of experience examining what works best in student learning and achievement. His research, better known as Visible Learning, is a culmination of nearly thirty years synthesizing more than 2,100 meta-analyses comprising more than one hundred thousand studies involving over 300 million students around the world. He has presented and keynoted in over three hundred international conferences and has received numerous recognitions for his contributions to education. His notable publications include Visible Learning, Visible Learning for Teachers, Visible Learning and the Science of How We Learn; Visible Learning for Mathematics, Grades K-12; and 10 Mindframes for Visible Learning. Klappentext Rich tasks, collaborative work, number talks, problem-based learning, direct instruction…with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school.That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings.Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency.Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning. Zusammenfassung Discover the right mathematics strategy to use at each learning phase so all students demonstrate more than a year's worth of learning per school year. Inhaltsverzeichnis List of Figures List of Videos About the Teachers Featured in the Videos Foreword About the Authors Acknowledgments Preface Chapter 1. Make Learning Visible in Mathematics Forgetting the Past What Makes for Good Instruction? The Evidence Base Meta-Analyses Effect Sizes Noticing What Does and Does Not Work Direct and Dialogic Approaches to Teaching and Learning The Balance of Surface, Deep, and Transfer Learning Surface Learning Deep Learning Transfer Learning Surface, Deep, and Transfer Learning Working in Concert Conclusion Reflection and Discussion Questions Chapter 2. Making Learning Visible Starts With Teacher Clarity Learning Intentions for Mathematics Student Ownership of Learning Intentions Connect Learning Intentions to Prior Knowledge Make Learning I...