Fr. 158.00

Frames and Other Bases in Abstract and Function Spaces - Novel Methods in Harmonic Analysis, Volume 1

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The first of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. 
The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. 
Volume I is organized around the theme of frames and other bases in abstract and function spaces, covering topics such as:

  • The advanced development of frames, including Sigma-Delta quantization for fusion frames, localization of frames, and frame conditioning, as well as applications to distributed sensor networks, Galerkin-like representation of operators, scaling on graphs, and dynamical sampling.
  • A systematic approach to shearlets with applications to wavefront sets and function spaces.
  • Prolate and generalized prolate functions, spherical Gauss-Laguerre basis functions, and radial basis functions.
  • Kernel methods, wavelets, and frames on compact and non-compact manifolds.

Inhaltsverzeichnis

Frames: Theory and Practice.- Dynamical Sampling and Systems from Iterative Actions of Operators.- Optimization Methods for Frame Conditioning and Application to Graph Laplacian Scaling.- A Guide to Localized Frames and Applications to Galerkin-Like Representations of Operators.- Computing the Distance between Frames and between Subspaces of a Hilbert Space.- Sigma-Delta Quantization for Fusion Frames and Distributed Sensor Networks.- Recent Progress in Shearlet Theory: Systematic Construction of Shearlet Dilation Groups, Characterization of Wavefront Sets, and New Embeddings.- Numerical Solution to an Energy Concentration Problem Associated with the Special Affine Fourier Transformation.- A Frame Reconstruction Algorithm with Applications to Magnetic Resonance Imaging.- Frame Properties of Shifts of Prolate and Bandpass Prolate Functions.- Fast Fourier Transforms for Spherical Gauss-Laguerre Basis Functions.- Multiscale Radial Basis Functions.- Orthogonal Wavelet Frames on Manifolds Based on Conformal Mappings.- Quasi Monte Carlo Integration and Kernel-Based Function Approximation on Grassmannians.- Construction of Multiresolution Analysis Based on Localized Reproducing Kernels.- Regular Sampling on Metabelian Nilpotent Lie Groups: The Multiplicity-Free Case.- Parseval Space-Frequency Localized Frames on Sub-Riemann Compact Homogeneous Manifolds.

Zusammenfassung

The first of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. 
The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. 
Volume I is organized around the theme of frames and other bases in abstract and function spaces, covering topics such as:

  • The advanced development of frames, including Sigma-Delta quantization for fusion frames, localization of frames, and frame conditioning, as well as applications to distributed sensor networks, Galerkin-like representation of operators, scaling on graphs, and dynamical sampling.
  • A systematic approach to shearlets with applications to wavefront sets and function spaces.
  • Prolate and generalized prolate functions, spherical Gauss-Laguerre basis functions, and radial basis functions.
  • Kernel methods, wavelets, and frames on compact and non-compact manifolds.

Produktdetails

Mitarbeit Quoc Thong Le Gia (Herausgeber), Quoc Thong Le Gia (Herausgeber), Azita Mayeli (Herausgeber), Azita Mayeli et al (Herausgeber), Hrushikesh Mhaskar (Herausgeber), Isaac Pesenson (Herausgeber), Quo Thong Le Gia (Herausgeber), Quoc Thong Le Gia (Herausgeber), Ding-Xuan Zhou (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 30.06.2017
 
EAN 9783319555492
ISBN 978-3-31-955549-2
Seiten 438
Abmessung 156 mm x 245 mm x 26 mm
Gewicht 836 g
Illustration XIV, 438 p. 62 illus., 41 illus. in color.
Serien Applied and Numerical Harmonic Analysis
Applied and Numerical Harmonic Analysis
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

B, Big Data, Datenbanken, Numerische Mathematik, Mathematics and Statistics, Computer mathematics, Numerical analysis, Abstract Harmonic Analysis, Harmonic analysis, Computational Science and Engineering, Maths for scientists, Functional analysis & transforms, Fourier Analysis, Databases

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.