Fr. 96.00

Measures, Integrals and Martingales

Englisch · Taschenbuch

Versand in der Regel in 1 bis 3 Arbeitstagen

Beschreibung

Mehr lesen

Informationen zum Autor René L. Schilling is a Professor of Mathematics at Technische Universität, Dresden. His main research area is stochastic analysis and stochastic processes. Klappentext A concise, elementary introduction to measure and integration theory, requiring few prerequisites as theory is developed quickly and simply. Zusammenfassung Measure and integration are key topics in many areas of mathematics! including analysis! probability! mathematical physics and finance. This book offers a concise yet elementary introduction in which the theory is quickly and simply developed. Few prerequisites are required! making the text suitable for undergraduate lecture courses or self-study. Inhaltsverzeichnis List of symbols; Prelude; Dependence chart; 1. Prologue; 2. The pleasures of counting; 3. ¿-algebras; 4. Measures; 5. Uniqueness of measures; 6. Existence of measures; 7. Measurable mappings; 8. Measurable functions; 9. Integration of positive functions; 10. Integrals of measurable functions; 11. Null sets and the 'almost everywhere'; 12. Convergence theorems and their applications; 13. The function spaces Lp; 14. Product measures and Fubini's theorem; 15. Integrals with respect to image measures; 16. Jacobi's transformation theorem; 17. Dense and determining sets; 18. Hausdorff measure; 19. The Fourier transform; 20. The Radon-Nikodym theorem; 21. Riesz representation theorems; 22. Uniform integrability and Vitali's convergence theorem; 23. Martingales; 24. Martingale convergence theorems; 25. Martingales in action; 26. Abstract Hilbert spaces; 27. Conditional expectations; 28. Orthonormal systems and their convergence behaviour; Appendix A. Lim inf and lim sup; Appendix B. Some facts from topology; Appendix C. The volume of a parallelepiped; Appendix D. The integral of complex valued functions; Appendix E. Measurability of the continuity points of a function; Appendix F. Vitali's covering theorem; Appendix G. Non-measurable sets; Appendix H. Regularity of measures; Appendix I. A summary of the Riemann integral; References; Name and subject index....

Inhaltsverzeichnis

List of symbols; Prelude; Dependence chart; 1. Prologue; 2. The pleasures of counting; 3. s-algebras; 4. Measures; 5. Uniqueness of measures; 6. Existence of measures; 7. Measurable mappings; 8. Measurable functions; 9. Integration of positive functions; 10. Integrals of measurable functions; 11. Null sets and the 'almost everywhere'; 12. Convergence theorems and their applications; 13. The function spaces Lp; 14. Product measures and Fubini's theorem; 15. Integrals with respect to image measures; 16. Jacobi's transformation theorem; 17. Dense and determining sets; 18. Hausdorff measure; 19. The Fourier transform; 20. The Radon-Nikodym theorem; 21. Riesz representation theorems; 22. Uniform integrability and Vitali's convergence theorem; 23. Martingales; 24. Martingale convergence theorems; 25. Martingales in action; 26. Abstract Hilbert spaces; 27. Conditional expectations; 28. Orthonormal systems and their convergence behaviour; Appendix A. Lim inf and lim sup; Appendix B. Some facts from topology; Appendix C. The volume of a parallelepiped; Appendix D. The integral of complex valued functions; Appendix E. Measurability of the continuity points of a function; Appendix F. Vitali's covering theorem; Appendix G. Non-measurable sets; Appendix H. Regularity of measures; Appendix I. A summary of the Riemann integral; References; Name and subject index.

Bericht

Review of previous edition: '... thorough introduction to a wide variety of first-year graduate-level topics in analysis ... accessible to anyone with a strong undergraduate background in calculus, linear algebra and real analysis.' Zentralblatt MATH

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.