Fr. 165.00

Prediction and Inference from Social Networks and Social Media

Englisch · Fester Einband

Versand in der Regel in 4 bis 7 Arbeitstagen

Beschreibung

Mehr lesen

This book addresses the challenges of social network and social media analysis in terms of prediction and inference. The chapters collected here tackle these issues by proposing new analysis methods and by examining mining methods for the vast amount of social content produced. Social Networks (SNs) have become an integral part of our lives; they are used for leisure, business, government, medical, educational purposes and have attracted billions of users. The challenges that stem from this wide adoption of SNs are vast. These include generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, and behavior detection. This text has applications to widely used platforms such as Twitter and Facebook and appeals to students, researchers, and professionals in the field.

Inhaltsverzeichnis

Chapter1. Having Fun?: Personalized Activity-based Mood Prediction in Social Media.- Chapter2. Automatic Medical Image Multilingual Indexation through a Medical Social Network.- Chapter3. The Significant Effect of Overlapping Community Structures in Signed Social Networks.- Chapter4. Extracting Relations Between Symptoms by Age-Frame Based Link Prediction.- Chapter5. Link Prediction by Network Analysis.- Chapter6. Structure-Based Features for Predicting the Quality of Articles in Wikipedia.- Chapter7. Predicting Collective Action from Micro-Blog Data.- Chapter8. Discovery of Structural and Temporal Patterns in MOOC Discussion Forums.- Chapter9. Diffusion Process in a Multi-Dimension Networks: Generating, Modelling and Simulation.

Zusammenfassung

This book addresses the challenges of social network and social media analysis in terms of prediction and inference. The chapters collected here tackle these issues by proposing new analysis methods and by examining mining methods for the vast amount of social content produced. Social Networks (SNs) have become an integral part of our lives; they are used for leisure, business, government, medical, educational purposes and have attracted billions of users. The challenges that stem from this wide adoption of SNs are vast. These include generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, and behavior detection. This text has applications to widely used platforms such as Twitter and Facebook and appeals to students, researchers, and professionals in the field.

Produktdetails

Mitarbeit Niti Agarwal (Herausgeber), Nitin Agarwal (Herausgeber), Jalal Kawash (Herausgeber), Tansel Özyer (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 01.01.2017
 
EAN 9783319510484
ISBN 978-3-31-951048-4
Seiten 225
Abmessung 160 mm x 241 mm x 19 mm
Gewicht 514 g
Illustration IX, 225 p. 82 illus., 54 illus. in color.
Serien Lecture Notes in Social Networks
Springer
Lecture Notes in Social Networks
Thema Naturwissenschaften, Medizin, Informatik, Technik > Physik, Astronomie

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.