Fr. 70.00

Developments and Retrospectives in Lie Theory - Geometric and Analytic Methods

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. At the beginning, the top universities in California and Utah hosted the meetings, which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklahoma. These Lie theory workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. The contributors have all participated in these Lie theory workshops and include in this volume expository articles which will cover representation theory from the algebraic, geometric, analytic, and topological perspectives with also important connections to math physics. These survey articles, review and update the prominent seminal series of workshops in representation/Lie theory mentioned above, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, number theory, and mathematical physics. Many of the contributors have had prominent roles in both the classical and modern developments of Lie theory and its applications.

Inhaltsverzeichnis

Group gradings on Lie algebras and applications to geometry. II (Y. Bahturin, M. Goze, E. Remm).- Harmonic analysis on homogeneous complex bounded domains and noncommutative geometry (P. Bieliavsky, V. Gayral, A. de Goursac, F. Spinnler).- The radon transform and its dual for limits of symmetric spaces (J. Hilgert, G. Ólafsson).- Cycle Connectivity and Automorphism Groups of Flag Domains (A. Huckleberry).- Shintani functions, real spherical manifolds, and symmetry breaking operators (T. Kobayashi).- Harmonic spinors on reductive homogeneous spaces (S. Mehdi, R. Zierau).- Twisted Harish-Chandra sheaves and Whittaker modules: The nondegenerate case (D. Milicic, W. Soergel).- Unitary representations of unitary groups (K.-H. Neeb).- Weak splitting of quotients of Drinfeld and Heisenberg doubles (M. Yakimov).

Zusammenfassung

The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. At the beginning, the top universities in California and Utah hosted the meetings, which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklahoma. These Lie theory workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. The contributors have all participated in these Lie theory workshops and include in this volume expository articles which will cover representation theory from the algebraic, geometric, analytic, and topological perspectives with also important connections to math physics. These survey articles, review and update the prominent seminal series of workshops in representation/Lie theory mentioned above, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, number theory, and mathematical physics. Many of the contributors have had prominent roles in both the classical and modern developments of Lie theory and its applications.

Produktdetails

Mitarbeit Joseph A Wolf (Herausgeber), Geoffrey Mason (Herausgeber), Iva Penkov (Herausgeber), Ivan Penkov (Herausgeber), Joseph A. Wolf (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2016
 
EAN 9783319348759
ISBN 978-3-31-934875-9
Seiten 268
Abmessung 155 mm x 15 mm x 235 mm
Gewicht 429 g
Illustration IX, 268 p.
Serien Developments in Mathematics
Developments in Mathematics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Arithmetik, Algebra

Zahlentheorie, B, Mathematische Physik, Algebraische Geometrie, Mathematics and Statistics, Algebraic Geometry, Number Theory, Mathematical physics, Topological Groups, Lie Groups, Topological groups, Lie groups, Topological Groups and Lie Groups

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.