Fr. 70.00

Marginal Space Learning for Medical Image Analysis - Efficient Detection and Segmentation of Anatomical Structures

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.

Inhaltsverzeichnis

Introduction.- Marginal Space Learning.- Comparison of Marginal Space Learning and Full Space Learning in 2D.- Constrained Marginal Space Learning.- Part-Based Object Detection and Segmentation.- Optimal Mean Shape for Nonrigid Object Detection and Segmentation.- Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation.- Applications of Marginal Space Learning in Medical Imaging.- Conclusions and Future Work.

Zusammenfassung

Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.

Zusatztext

“This book presents a generic learning-based method for efficient 3D object detection called marginal space learning (MSL). … Each chapter ends with a remarkable bibliography on the topics covered. This book is suited for students and researchers with interest in medical image analysis.” (Oscar Bustos, zbMATH 1362.92004, 2017)

Bericht

"This book presents a generic learning-based method for efficient 3D object detection called marginal space learning (MSL). ... Each chapter ends with a remarkable bibliography on the topics covered. This book is suited for students and researchers with interest in medical image analysis." (Oscar Bustos, zbMATH 1362.92004, 2017)

Produktdetails

Autoren Dorin Comaniciu, Yefen Zheng, Yefeng Zheng
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2016
 
EAN 9781493955756
ISBN 978-1-4939-5575-6
Seiten 268
Abmessung 235 mm x 277 mm x 17 mm
Gewicht 441 g
Illustration XX, 268 p. 122 illus., 58 illus. in color.
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Anwendungs-Software

B, Künstliche Intelligenz, Artificial Intelligence, Radiology, Bildgebende Verfahren, ULTRASOUND, computer science, Computer Imaging, Vision, Pattern Recognition and Graphics, Imaging / Radiology, Optical data processing, Medical imaging, medical image analysis, Object detection, Medical Image Segmentation, marginal space learning, organ segmentation

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.