Fr. 70.00

Deep Learning and Data Labeling for Medical Applications - First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.

Inhaltsverzeichnis

Active learning.- Semi-supervised learning.- Reinforcement learning.- Domain adaptation and transfer learning.- Crowd-sourcing annotations and fusion of labels from different sources.- Data augmentation.- Modelling of label uncertainty.- Visualization and human-computer interaction.- Image description.- Medical imaging-based diagnosis.- Medical signal-based diagnosis.- Medical image reconstruction and model selection using deep learning techniques.- Meta-heuristic techniques for fine-tuning.- Parameter in deep learning-based architectures.- Applications based on deep learning techniques.

Zusammenfassung

This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.

Produktdetails

Mitarbeit Vasileios Belagiannis (Herausgeber), Andrew Bradley (Herausgeber), Jaime S. Cardoso (Herausgeber), Gustavo Carneiro (Herausgeber), Julien Cornebise (Herausgeber), Peter Loïc (Herausgeber), Marco Loog (Herausgeber), Zhi Lu (Herausgeber), Dian Mateus (Herausgeber), Diana Mateus (Herausgeber), Jacinto C. Nascimento (Herausgeber), João Paulo Papa (Herausgeber), Loïc Peter (Herausgeber), Loïc Peter (Herausgeber), Loïc Peter et al (Herausgeber), João Manuel R. S. Tavares (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 31.12.2016
 
EAN 9783319469751
ISBN 978-3-31-946975-1
Seiten 280
Abmessung 169 mm x 17 mm x 238 mm
Gewicht 453 g
Illustration XIII, 280 p. 115 illus.
Serien Lecture Notes in Computer Science
Image Processing, Computer Vision, Pattern Recognition, and Graphics
Lecture Notes in Computer Science
Image Processing, Computer Vision, Pattern Recognition, and Graphics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Anwendungs-Software

C, Künstliche Intelligenz, machine learning, neurosurgery, Artificial Intelligence, Mustererkennung, Grafikprogrammierung, Computeranwendungen in Industrie und Technologie, computer science, Computer Vision, Health Informatics, Image Processing and Computer Vision, Computer Graphics, pattern recognition, Automated Pattern Recognition, Health & safety aspects of IT, Optical data processing, Graphics programming, Computer applications in industry and technology, Transfer Learning, semi-supervised learning, semantic description, multi-label annotation, parameter approximation

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.