Fr. 237.00

Proceedings of ELM-2014 Volume 1 - Algorithms and Theories

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote research and development of "learning without iterative tuning". The book covers theories, algorithms and applications of ELM. It gives the readers a glance of the most recent advances of ELM.

Inhaltsverzeichnis

Sparse Bayesian ELM handling with missing data for multi-class classification.- A Fast Incremental Method Based on Regularized Extreme Learning Machine.- Parallel Ensemble of Online Sequential Extreme Learning Machine Based on MapReduce.- Explicit Computation of Input Weights in Extreme Learning Machines.- Subspace Detection on Concept Drifting Data Stream.- Inductive Bias for Semi-supervised Extreme Learning Machine.- ELM based Efficient Probabilistic Threshold Query on Uncertain Data.- Sample-based Extreme Learning Machine Regression with Absent Data.- Two Stages Query Processing Optimization based on ELM in the Cloud.- Domain Adaption Transfer Extreme Learning Machine.- Quasi-linear extreme learning machine model based nonlinear system identification.- A novel bio-inspired image recognition network with extreme learning machine.- A Deep and Stable Extreme Learning Approach for Classification and Regression.- Extreme Learning Machine Ensemble Classifier for Large-scale Data.- Pruned Extreme Learning Machine Optimization based on RANSAC Multi Model Response Regularization.- Learning ELM network weights using linear discriminant analysis.- An Algorithm for Classification over Uncertain Data based on Extreme Learning Machine.- Training Generalized Feedforward Kernelized Neural Networks on Very Large Datasets for Regression Using Minimal-Enclosing-Ball Approximation.- An Online Multiple Model Approach to Improve Performance in Univariate Time-Series Prediction.- A Self-organizing Mixture Extreme Leaning Machine for Time Series Forecasting.- A Robust AdaBoost.RT based Ensemble Extreme Learning Machine.- Machine learning reveals different brain activities during TOVA test.- Online Sequential Extreme Learning Machine with New Weight-setting Strategy or Non stationary Time Series Prediction.- RMSE-ELM: Recursive Model based Selective Ensemble of Extreme Learning Machines for Robustness Improvement.- Extreme Learning Machine for Regression and Classification UsingL1-Norm and L2-Norm.- A Semi-supervised Online Sequential Extreme Learning Machine Method.- ELM feature mappings learning: Single-hidden-layer feed forward network without output weight.- ROS-ELM: A Robust Online Sequential Extreme Learning Machine for Big Data.- Deep Extreme Learning Machines for Classification.- C-ELM: A Curious Extreme Learning Machine for Classification Problems.- Review of Advances in Neural Networks: Neural Design Technology Stack.- Applying Regularization Least Squares Canonical Correction Analysis in Extreme Learning Machine formulti-label classification problems.- Least Squares Policy Iteration based on Random Vector Basis.- Identifying Indistinguishable Classes in Multi-class Classification Data Sets using ELM.- Effects of Training Datasets on both the Extreme Learning Machine and Support Vector Machine for Target Audience Identification on Twitter.- Extreme Learning Machine for Clustering.

Zusammenfassung

This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote research and development of “learning without iterative tuning”.  The book covers theories, algorithms and applications of ELM. It gives the readers a glance of the most recent advances of ELM.

Produktdetails

Mitarbeit Erik Cambria (Herausgeber), Erik Cambria et al (Herausgeber), Jiuwen Cao (Herausgeber), Zhihong Man (Herausgeber), Kezh Mao (Herausgeber), Kezhi Mao (Herausgeber), Kar-Ann Toh (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2016
 
EAN 9783319366845
ISBN 978-3-31-936684-5
Seiten 446
Abmessung 155 mm x 234 mm x 235 mm
Gewicht 690 g
Illustration VIII, 446 p. 124 illus.
Serien Proceedings in Adaptation, Learning and Optimization
Proceedings in Adaptation, Learning and Optimization
Themen Naturwissenschaften, Medizin, Informatik, Technik > Technik > Allgemeines, Lexika

C, Artificial Intelligence, engineering, Computational Intelligence, Multiagent Systems, The International Conference on Extreme Learning Machines

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.