Fr. 188.00

The Mechanics and Mathematics of Fluids of the Differential Type

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

This text is the first of its kind to bring together both the thermomechanics and mathematical analysis of Reiner-Rivlin fluids and fluids of grades 2 and 3 in a single book. Each part of the book can be considered as being self-contained. The first part of the book is devoted to a description of the mechanics, thermodynamics, and stability of flows of fluids of grade 2 and grade 3.  The second part of the book is dedicated to the development of rigorous mathematical results concerning the equations governing the motion of a family of fluids of the differential type.  Finally, the proofs of a number of useful results are collected in an appendix.

Inhaltsverzeichnis

Introduction.- Mechanics.- Mathematical Preliminaries.- Classical Non-Newtonian Fluids.- Grade-two Fluids: Some Theoretical Results.- Short Survey on the Theory of Grade-three Fluids.- Appendix.

Über den Autor / die Autorin

Doina Vioranescu is Director of Research at CNRS, Laboratoire Jacquies-Louis Lions, Université Pierre et Marie Curie.  Her research topics include numerical analysis and partial differential equations.
Vivette Girault is Volunteer Collaborator at Université Pierre et Marie Curie.  Her research topics include numerical analysis and partial differential equations.
Kumbakonam Rajagopal is Distinguished Professor at Texas A&M University.  His research interests include continuum mechanics and its applications non non-linear materials.

Zusammenfassung

This text is the first of its kind to bring together both the thermomechanics and mathematical analysis of Reiner-Rivlin fluids and fluids of grades 2 and 3 in a single book. Each part of the book can be considered as being self-contained. The first part of the book is devoted to a description of the mechanics, thermodynamics, and stability of flows of fluids of grade 2 and grade 3.  The second part of the book is dedicated to the development of rigorous mathematical results concerning the equations governing the motion of a family of fluids of the differential type.  Finally, the proofs of a number of useful results are collected in an appendix.

Zusatztext

“This is a very well written and organized text. It contains all the essential background as well as state-of-the-art summary of the current knowledge in the field. It can be used as a textbook as well a handy reference book and starting point for advanced research.” (Tomás̃ Bodnár, Mathematical Reviews, June, 2017)

Bericht

"This is a very well written and organized text. It contains all the essential background as well as state-of-the-art summary of the current knowledge in the field. It can be used as a textbook as well a handy reference book and starting point for advanced research." (Tomás Bodnár, Mathematical Reviews, June, 2017)

Produktdetails

Autoren Cioranescu, D Cioranescu, D. Cioranescu, Doina Cioranescu, Girault, V Girault, V. Girault, Vivette Girault, K R Rajagopal, K. R. Rajagopal, K.R. Rajagopal
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 01.01.2016
 
EAN 9783319393292
ISBN 978-3-31-939329-2
Seiten 394
Abmessung 161 mm x 29 mm x 239 mm
Gewicht 760 g
Illustration VIII, 394 p. 16 illus.
Serien Advances in Mechanics and Mathematics
Advances in Mechanics and Mathematics 78320
Advances in Mechanics and Mathematics
Thema Naturwissenschaften, Medizin, Informatik, Technik > Physik, Astronomie > Theoretische Physik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.