vergriffen

L² Approaches in Several Complex Variables - Development of Oka-Cartan Theory by L² Estimates for the d-bar Operator

Englisch · Fester Einband

Beschreibung

Mehr lesen

The purpose of this monograph is to present the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Highlighted are the new precise results on the L ² extension of holomorphic functions.

In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the L ² method of solving the d-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka-Cartan theory is given by this method. The L ² extension theorem with an optimal constant is included, obtained recently by Z. Blocki and by Q.-A. Guan and X.-Y. Zhou separately. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani-Yamaguchi, Berndtsson, and Guan-Zhou. Most of these results are obtained by the L ² method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the L ² method obtained during these 15 years.

Inhaltsverzeichnis

Part I Holomorphic Functions and Complex Spaces.- Convexity Notions.- Complex Manifolds.- Classical Questions of Several Complex Variables.- Part II The Method of L² Estimates.- Basics of Hilb
ert Space Theory.- Harmonic Forms.- Vanishing Theorems.- Finiteness Theorems.- Notes on Complete Kahler Domains (= CKDs).- Part III L² Variant of Oka-Cartan Theory.- Extension Theorems.- Division Theorems.- Multiplier Ideals.- Part IV Bergman Kernels.- The Bergman Kernel and Metric.- Bergman Spaces and Associated Kernels.- Sequences of Bergman Kernels.- Parameter Dependence.- Part V L² Approaches to Holomorphic Foliations.- Holomorphic Foliation and Stable Sets.- L² Method Applied to Levi Flat Hypersurfaces.- LFHs in Tori and Hopf Surfaces.

Produktdetails

Autoren Takeo Ohsawa
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 01.01.2015
 
EAN 9784431557463
ISBN 978-4-431-55746-3
Seiten 196
Abmessung 161 mm x 240 mm x 15 mm
Gewicht 426 g
Illustration 5 SW-Abb.
Serien Springer Monographs in Mathematics
Schriftenreihe Markt und Marketing
Springer Monographs in Mathematics
Schriftenreihe Markt und Marketing
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.