Fr. 189.00

Combustion Noise

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

November, 2008 Anna Schwarz, Johannes Janicka In the last thirty years noise emission has developed into a topic of increasing importance to society and economy. In ?elds such as air, road and rail traf?c, the control of noise emissions and development of associated noise-reduction techno- gies is a central requirement for social acceptance and economical competitiveness. The noise emission of combustion systems is a major part of the task of noise - duction. The following aspects motivate research: - Modern combustion chambers in technical combustion systems with low pol- tion exhausts are 5 - 8 dB louder compared to their predecessors. In the ope- tional state the noise pressure levels achieved can even be 10-15 dB louder. - High capacity torches in the chemical industry are usually placed at ground level because of the reasons of noise emissions instead of being placed at a height suitable for safety and security. - For airplanes the combustion emissions become a more and more important topic. The combustion instability and noise issues are one major obstacle for the introduction of green technologies as lean fuel combustion and premixed burners in aero-engines. The direct and indirect contribution of combustion noise to the overall core noise is still under discussion. However, it is clear that the core noise besides the fan tone will become an important noise source in future aero-engine designs. To further reduce the jet noise, geared ultra high bypass ratio fans are driven by only a few highly loaded turbine stages.

Inhaltsverzeichnis

Numerical RANS/URANS simulation of combustion noise.- Measurement and Simulation of Combustion Noise emitted from Swirl Burners.- Modeling of noise sources in combustion processes via Large-Eddy Simulation.- Modelling of the Sound Radiation from Flames by means of Acoustic Equivalent Sources.- Investigation of the Correlation of Entropy Waves and Acoustic Emission in Combustion Chambers.- Influence of boundary conditions on the noise emission of turbulent premixed swirl flames.- Theoretical and Numerical Analysis of Broadband Combustion Noise.- Investigations Regarding the Simulation of Wall Noise Interaction and Noise Propagation in Swirled Combustion Chamber Flows.- Direct Numerical Simulations of turbulent flames to analyze flame/acoustic interactions.- Localization of Sound Sources in Combustion Chambers.

Zusammenfassung

November, 2008 Anna Schwarz, Johannes Janicka In the last thirty years noise emission has developed into a topic of increasing importance to society and economy. In ?elds such as air, road and rail traf?c, the control of noise emissions and development of associated noise-reduction techno- gies is a central requirement for social acceptance and economical competitiveness. The noise emission of combustion systems is a major part of the task of noise - duction. The following aspects motivate research: • Modern combustion chambers in technical combustion systems with low pol- tion exhausts are 5 - 8 dB louder compared to their predecessors. In the ope- tional state the noise pressure levels achieved can even be 10-15 dB louder. • High capacity torches in the chemical industry are usually placed at ground level because of the reasons of noise emissions instead of being placed at a height suitable for safety and security. • For airplanes the combustion emissions become a more and more important topic. The combustion instability and noise issues are one major obstacle for the introduction of green technologies as lean fuel combustion and premixed burners in aero-engines. The direct and indirect contribution of combustion noise to the overall core noise is still under discussion. However, it is clear that the core noise besides the fan tone will become an important noise source in future aero-engine designs. To further reduce the jet noise, geared ultra high bypass ratio fans are driven by only a few highly loaded turbine stages.

Produktdetails

Mitarbeit Janicka (Herausgeber), Janicka (Herausgeber), Johannes Janicka (Herausgeber), Ann Schwarz (Herausgeber), Anna Schwarz (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2014
 
EAN 9783642426100
ISBN 978-3-642-42610-0
Seiten 291
Abmessung 155 mm x 19 mm x 235 mm
Gewicht 480 g
Illustration XVII, 291 p.
Themen Naturwissenschaften, Medizin, Informatik, Technik > Technik > Allgemeines, Lexika

C, Acoustics, Wellenmechanik (Vibration und Akustik), Technische Thermodynamik, engineering, Thermodynamics, Engineering Thermodynamics, Heat and Mass Transfer, Engineering thermodynamics, Heat engineering, Heat transfer, Mass transfer, Wave mechanics (vibration & acoustics), Engineering Acoustics, Acoustical engineering

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.