Fr. 70.00

Separably Injective Banach Spaces

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This monograph contains a detailed exposition of the up-to-date theory of separably injective spaces: new and old results are put into perspective with concrete examples (such as l /c0 and C(K) spaces, where K is a finite height compact space or an F-space, ultrapowers of L  spaces and spaces of universal disposition).
It is no exaggeration to say that the theory of separably injective Banach spaces is strikingly different from that of injective spaces. For instance, separably injective Banach spaces are not necessarily isometric to, or complemented subspaces of, spaces of continuous functions on a compact space. Moreover, in contrast to the scarcity of examples and general results concerning injective spaces, we know of many different types of separably injective spaces and there is a rich theory around them. The monograph is completed with a preparatory chapter on injective spaces, a chapter on higher cardinal versions of separable injectivity and a lively discussion of open problems and further lines of research.

Inhaltsverzeichnis

A primer on injective Banach spaces.- Separably injective Banach spaces.- Spaces of universal disposition.- Ultraproducts of type L .- -injectivity.- Other weaker forms of injectivity.- Open Problems.

Zusammenfassung

This monograph contains a detailed exposition of the up-to-date theory of separably injective spaces: new and old results are put into perspective with concrete examples (such as l∞/c0 and C(K) spaces, where K is a finite height compact space or an F-space, ultrapowers of L∞ spaces and spaces of universal disposition).
It is no exaggeration to say that the theory of separably injective Banach spaces is strikingly different from that of injective spaces. For instance, separably injective Banach spaces are not necessarily isometric to, or complemented subspaces of, spaces of continuous functions on a compact space. Moreover, in contrast to the scarcity of examples and general results concerning injective spaces, we know of many different types of separably injective spaces and there is a rich theory around them. The monograph is completed with a preparatory chapter on injective spaces, a chapter on higher cardinal versions of separable injectivity and a lively discussion of open problems and further lines of research.

Zusatztext

“This book is a valuable contribution to the literature on Banach spaces.” (David Yost, zbMATH 1379.46002, 2018)

“The authors provide an excellent presentation of the subject, and they manage to organize an impressive amount of material in such a way that, although they use a great variety of tools from various branches to prove the results, the work remains readable and thought-provoking. The book will be an indispensible resource for graduate students and researchers.” (Antonis N. Manoussakis, Mathematical Reviews, January, 2017)

Bericht

"This book is a valuable contribution to the literature on Banach spaces." (David Yost, zbMATH 1379.46002, 2018)

"The authors provide an excellent presentation of the subject, and they manage to organize an impressive amount of material in such a way that, although they use a great variety of tools from various branches to prove the results, the work remains readable and thought-provoking. The book will be an indispensible resource for graduate students and researchers." (Antonis N. Manoussakis, Mathematical Reviews, January, 2017)

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.