Fr. 91.00

Gesammelte Mathematische Abhandlungen. Vol.I - Erster Band: Liniengeometrie - Grundlegung der Geometrie zum Erlanger Programm

Deutsch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Inhaltsverzeichnis

Des Ersten Bandes.- Zur Liniengeometrie. Zur Dissertation.- I. Über die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linienkoordinaten auf eine kanonische Form (1868).- Zu den folgenden liniengeometrischen Arbeiten.- II. Zur Theorie der Linienkomplexe des ersten und zweiten Grades (1869-70).- III. Die allgemeine lineare Transformation der Linienkoordinaten (1869-70).- IV. Über Abbildung der Komplexflächen vierter Ordnung und vierter Klasse (1869-70).- V. Eine Abbildung des Linienkomplexes zweiten Grades auf den Punktraum (1869).- VI. (Zusammen mit S. Lie.) Über die Haupttangentenkurven der Kummersehen Fläche vierten Grades mit 16 Knotenpunkten (1870).- VII. Über einen Satz aus der Theorie der Linienkomplexe, welcher dem Dupinschen Theorem entspricht (1871).- VIII. Über Liniengeometrie und metrische Geometrie (1871-72).- IX. Über gewisse in der Liniengeometrie auftretende Differentialgleichungen (1871-72).- X. Über einen liniengeometrischen Satz (1872).- XI. Überdie Plückersche Komplexfläche (1873-74).- XII. Über Konfigurationen, welch° der Kummerschen Fläche zugleich eingeschrieben und umgeschrieben sind (1885).- XIII. Zur geometrischen Deutung des Abe l sehen Theorems der hyperelliptischen Integrale (1886).- XIV. Notiz, betreffend den Zusammenhang der Liniengeometrie mit der Mechanik starrer Körper (1871).- Zur Grundlegung der Geometrie. Vorbemerkungen zu den Arbeiten über die Grundlagen der Geometrie.- XV. Über die sogenannte Nicht-Euklidische Geometrie (Vorl. Mitt.) (1871).- XVI. Über die sogenannte Nicht-Euklidische Geometrie (erster Aufsatz) (1871).- XVII. Über einen Satz aus der Analysis Situs (1872).- XVIII. Über die sogenannte Nicht-Euklidische Geometrie (zweiter Aufsatz) (1872-73).- XIX. Nachtrag zu dem "zweiten Aufsatz über Nicht-Euklidische Geometrie" (1874).- XX. Über die geometrische Definition der Projektivität auf den Grundgebilden erster Stufe (1880).- XXI. Zur Nicht-Euklidischen Geometrie (1890).- XXII. Gutachten, betreffendden dritten Band der Theorie der Transformationsgruppen von S. Lie anläßlich der ersten Verteilung des Lobatschewsky-Preises (1897).- XXIII. Zur Interpretation der komplexen Elemente in der Geometrie (1872).- XXIV. Eine Übertragung des Pascalschen Satzes auf Raumgeometrie (1873).- Zum Erlanger Programm. Zur Entstehung der Abhandlungen XXV-XXXIII.- XXV. (Zusammen mit S. Lie.) Deux notes sur une certaine famille de courbes et de surfaces (1870).- XXVI. (Zusammen mit S. Lie.) Über diejenigen ebenen Kurven, welche durch ein geschlossenes System von einfach unendlich vielen, vertauschbaren linearen Transformationen in sich übergehen (1871).- XXVII. Vergleichende Betrachtungen über neuere geometrische Forschungen (Das Erlanger Programm.) (1872).- XXVIII. Autographierte Vorlesungshefte (Höhere Geometrie) (1894).- XXIX. Zur Schraubentheorie von Sir Robert Ball (1901-02).- XXX Über die geometrischen Grundlagen der Lorentzgruppe (1910).- XXXI Zu Hilberts erster Note über die Grundlagen der Physik (1917-18).- XXXII Über die Differentialgesetze für die Erhaltung von Impuls und Energie in der Einsteinschen Gravitationstheorie (1918).- XXXIII. Über die Integralform der Erhaltungssätze und die Theorie der räumlich geschlossenen Welt (1918).

Über den Autor / die Autorin










  

Zusammenfassung

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Produktdetails

Autoren Felix Klein
Mitarbeit R. Fricke (Herausgeber), Rober Fricke (Herausgeber), Robert Fricke (Herausgeber), Markowitsch Ostrowski (Herausgeber), Markowitsch Ostrowski (Herausgeber), A. Ostrowski (Herausgeber), Alexander Ostrowski (Herausgeber)
Verlag Springer, Berlin
 
Sprache Deutsch
Produktform Taschenbuch
Erschienen 01.01.2014
 
EAN 9783662454626
ISBN 978-3-662-45462-6
Seiten 312
Abmessung 161 mm x 236 mm x 32 mm
Gewicht 949 g
Illustration XVI, 312 S.
Serien Springer Collected Works in Mathematics
Springer Collected Works in Mathematics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Geometrie

Physik, Weiterbildung, Recht, Koordinaten, Geometrie, Weg, C, System, Wurzel, Gleichung, Erlang, geometry, Lehrsatz, Mathematics and Statistics, Nicht-Euklidische Geometrie, Transformationsgruppe

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.