Fr. 158.00

Recent Trends in Lorentzian Geometry

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Traditionally, Lorentzian geometry has been used as a necessary tool to understand general relativity, as well as to explore new genuine geometric behaviors, far from classical Riemannian techniques. Recent progress has attracted a renewed interest in this theory for many researchers: long-standing global open problems have been solved, outstanding Lorentzian spaces and groups have been classified, new applications to mathematical relativity and high energy physics have been found, and further connections with other geometries have been developed.

Samples of these fresh trends are presented in this volume, based on contributions from the VI International Meeting on Lorentzian Geometry, held at the University of Granada, Spain, in September, 2011. Topics such as geodesics, maximal, trapped and constant mean curvature submanifolds, classifications of manifolds with relevant symmetries, relations between Lorentzian and Finslerian geometries, and applications to mathematical physics are included.

This book will be suitable for a broad audience of differential geometers, mathematical physicists and relativists, and researchers in the field.

Inhaltsverzeichnis

Hyperbolic metrics on Riemann surfaces and spacelike CMC-1 surfaces in de Sitter 3-space, Shoichi Fujimori, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara and Kotaro Yamada. - Bernstein results and parabolicity of maximal surfaces in Lorentzian product spaces, Alma L. Albujer and Luis J. Alías, Calabi. - Umbilical-Type Surfaces in Spacetime, José M. M. Senovilla. - Stability of marginally outer trapped surfaces and applications, Marc Mars. - Area inequalities for stable marginally trapped surfaces, José Luis Jaramillo. - Infinitesimal and local convexity of a hypersurface in a semi-Riemannian manifold, Erasmo Caponio. - Global geodesic properties of Gödel type spacetimes, R. Bartolo, A.M. Candela and J.L. Flores.- The geometry of collapsing isotropic fluids, Roberto Giamb`o and Giulio Magli. - Conformally standard stationary spacetimes and Fermat metrics, Miguel Ángel Javaloyes. - Can we make a Finsler metric complete by a trivial projective change? Vladimir S. Matveev. - The c-boundary construction of spacetimes: application to stationary Kerr spacetime, J.L. Flores and J. Herrera. - On the isometry group of Lorentz manifolds, Leandro A. Lichtenfelz, Paolo Piccione, and Abdelghani Zeghib. - Conformally flat homogeneous Lorentzian Manifolds, Kyoko Honda and Kazumi Tsukada. - Polar actions on symmetric spaces, José Carlos Díaz-Ramos. - (para)-Kähler Weyl structures, P. Gilkey and S. Nikcevic

Zusammenfassung

Traditionally, Lorentzian geometry has been used as a necessary tool to understand general relativity, as well as to explore new genuine geometric behaviors, far from classical Riemannian techniques. Recent progress has attracted a renewed interest in this theory for many researchers: long-standing global open problems have been solved, outstanding Lorentzian spaces and groups have been classified, new applications to mathematical relativity and high energy physics have been found, and further connections with other geometries have been developed.  
 
Samples of these fresh trends are presented in this volume, based on contributions from the VI International Meeting on Lorentzian Geometry, held at the University of Granada, Spain, in September, 2011. Topics such as geodesics, maximal, trapped and constant mean curvature submanifolds, classifications of manifolds with relevant symmetries, relations between Lorentzian and Finslerian geometries, and applications to mathematical physics are included.  ​  
 
This book will be suitable for a broad audience of differential geometers, mathematical physicists and relativists, and researchers in the field.

Produktdetails

Mitarbeit Migue Ortega (Herausgeber), Miguel Ortega (Herausgeber), Alfonso Romero (Herausgeber), Miguel S¿hez (Herausgeber), Miguel Sánchez (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2014
 
EAN 9781489996831
ISBN 978-1-4899-9683-1
Seiten 356
Abmessung 155 mm x 20 mm x 235 mm
Gewicht 558 g
Illustration XII, 356 p.
Serien Springer Proceedings in Mathematics & Statistics
Springer Proceedings in Mathematics & Statistics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Geometrie

C, Mathematics and Statistics, Discrete Mathematics, Differential Geometry, Discrete geometry, Convex and Discrete Geometry, Convex geometry, Differential & Riemannian geometry, Hyperbolic Geometry, Non-Euclidean geometry, Differential and Riemannian geometry

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.