Fr. 147.00

Lecture Notes on O-Minimal Structures and Real Analytic Geometry

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This volume was produced in conjunction with the Thematic Program in o-Minimal Structures and Real Analytic Geometry, held from January to June of 2009 at the Fields Institute. Five of the six contributions consist of notes from graduate courses associated with the program: Felipe Cano on a new proof of resolution of singularities for planar analytic vector fields; Chris Miller on o-minimality and Hardy fields; Jean-Philippe Rolin on the construction of o-minimal structures from quasianalytic classes; Fernando Sanz on non-oscillatory trajectories of vector fields; and Patrick Speissegger on pfaffian sets. The sixth contribution, by Antongiulio Fornasiero and Tamara Servi, is an adaptation to the nonstandard setting of A.J. Wilkie's construction of o-minimal structures from infinitely differentiable functions. Most of this material is either unavailable elsewhere or spread across many different sources such as research papers, conference proceedings and PhD theses.
This book will be a useful tool for graduate students or researchers from related fields who want to learn about expansions of o-minimal structures by solutions, or images thereof, of definable systems of differential equations.

Inhaltsverzeichnis

Preface.- Blowings-up of Vector Fields (F. Cano).- Basics of o-Minimality and Hardy Fields (C. Miller).- Construction of o-Minimal Structures from Quasianalytic Classes (J.-P. Rolin).- Course on Non-Oscillatory Trajectories.- F.S. Sánchez).- Pfaffian Sets and o-Minimality (P. Speissegger).- Theorems of the Complement (A. Fornasiero, T. Servi).

Zusammenfassung

​This volume was produced in conjunction with the Thematic Program in o-Minimal Structures and Real Analytic Geometry, held from January to June of 2009 at the Fields Institute. Five of the six contributions consist of notes from graduate courses associated with the program: Felipe Cano on a new proof of resolution of singularities for planar analytic vector fields; Chris Miller on o-minimality and Hardy fields; Jean-Philippe Rolin on the construction of o-minimal structures from quasianalytic classes; Fernando Sanz on non-oscillatory trajectories of vector fields; and Patrick Speissegger on pfaffian sets. The sixth contribution, by Antongiulio Fornasiero and Tamara Servi, is an adaptation to the nonstandard setting of A.J. Wilkie's construction of o-minimal structures from infinitely differentiable functions. Most of this material is either unavailable elsewhere or spread across many different sources such as research papers, conference proceedings and PhD theses.
This book will be a useful tool for graduate students or researchers from related fields who want to learn about expansions of o-minimal structures by solutions, or images thereof, of definable systems of differential equations. ​

Produktdetails

Mitarbeit Chris Miller (Herausgeber), Jean-Philipp Rolin (Herausgeber), Jean-Philippe Rolin (Herausgeber), Patrick Speissegger (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2014
 
EAN 9781493901029
ISBN 978-1-4939-0102-9
Seiten 244
Abmessung 155 mm x 12 mm x 235 mm
Gewicht 391 g
Illustration VIII, 244 p.
Serien Fields Institute Communications
Fields Institute Communications
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Grundlagen

Algebra, C, Group Theory, Mathematics and Statistics, Groups & group theory, Group Theory and Generalizations, Mathematical logic, Mathematical Logic and Foundations, General Algebraic Systems, Groups and group theory

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.