Fr. 82.80

High-Power Lasers and Laser Plasmas / Moshchnye Lazery I Lazernaya Plazma /

Englisch · Taschenbuch

Versand in der Regel in 3 bis 5 Wochen (Titel wird speziell besorgt)

Beschreibung

Mehr lesen










Stimulated Mandel¿ shtam ¿ Brillouin Scattering Lasers V. V. Ragul¿skii.- I Conditions for Obtaining Stationary Lasing with Stimulated Scattering of Light.- ¿ 1. Influence of Intensity, Energy Density, and Exciting-Radiation Pulse Duration on the Laser Operation.- ¿ 2. Experimental Verification of the Conditions for Stationary Lasing.- II Gains and Line Widths for SMBS in Gases.- III Single-Frequency SMBS Ring Laser.- ¿ 1. Feasibility of Effective Conversion of Pump Radiation.- ¿ 2. Single-Frequency SMBS Laser.- IV Operation of SMBS Amplifier in the Saturation Regime.- ¿ 1. Characteristics of SMBS Amplifier in the Stationary Regime.- ¿ 2. Experimental Investigation of Amplifier Operation in the Saturation Region.- V Q Switching by SMBS.- ¿ 1. Lasing Dynamics.- ¿ 2. Conditions under Which Q Switching Is Possible.- ¿ 3. Experimental Verification of the Q-Switching Conditions.- VI Inversion of the Exciting-Radiation Wave Front in SMBS.- ¿ 1. Comparison of the Wave Fronts of the Exciting and Scattered Light with the Aid of a Phase Plate.- ¿ 2. Influence of the Structure of the Exciting Radiation Field on the Shape of the Scattered-Light Front.- ¿ 3. Compensation for the Phase Distortions in an Amplifying Medium with the Aid of a ¿Brillouin Mirror¿.- VII SMBS in the Case of Exciting Radiation with a Broad Spectrum.- Appendix Experimental Technique.- ¿ 1. Divergence Measurement Procedure.- ¿ 2. Cell for Optical Investigations of Compressed Gases.- ¿ 3. Faraday Decoupler.- ¿ 4. Single-Mode Ruby Laser with Pulse Duration 60 nsec.- ¿ 5. Single-Mode Ruby Laser with Pulse Duration 60-200 nsec.- ¿ 6. Fabry ¿ Perot Etalon with 46-cm Base..- Literature Cited.- Compressed-Gas Lasers V. A. Danilychev, O. M. Kerimov, and I. B. Kovsh.- I Electroionization Method of Exciting Compressed-Gas Lasers.- ¿ 1. Mechanism of Current Flow through the Active Medium of an Electroionization Laser.- ¿ 2. Experimental Technique.- 2.1. Construction of Laser Chambers.- 2.2. Optical Resonators.- 2.3. Measurements of Laser Parameters.- ¿ 3. Electric Characteristics of Active Medium.- 3.1. Calculation of the Characteristics of the Discharge Excited by the Electroionization Method.- 3.2. Experimental Investigation of a Nonautonomous Discharge Initiated in a Compressed Gas by an Intense Electron Beam ¿ Discussion of Results..- II Electroionization CO2 High-Pressure Laser.- ¿ 1. Kinetics of Population of Working Levels; Gain of Active Medium of Electroionization CO2 Laser.- ¿ 2. Threshold Characteristics, Output Energy, Power, and Efficiency of Laser; Divergence of the Radiation..- ¿ 3. Gain Spectrum of Electroionization CO2 Laser.- ¿ 4. Relaxation of Upper Laser Level at High Pressures.- ¿ 5. Operating Regimes of Electroionization CO2 Lasers.- III High-Pressure Gas Lasers Using Other Working Media.- ¿ 1. Electroionization CO Laser.- ¿ 2. Laser Operating with Compressed Xenon and Ar:Xe Mixture..- ¿ 3. Ultraviolet High-Pressure Laser Using the Mixture Ar:N2.- Conclusion.- Appendix Theory of Current Flow through an Ionized Gas.- Literature Cited.- Experimental Investigation of the Reflection and Absorptionof High-Power Radiation in a Laser Plasma O. N. Krokhin, G. V. Sklizkov, and A. S. Shikanov.- I Reflection of Laser Radiation from a Plasma (Survey of the Literature).- ¿ 1. Experimental Conditions Realized in Research on Laser-Plasma Parameters.- ¿ 2. Energy Composition of the Reflected Radiation; Anomalous Character of the Interaction of Laser Radiation with a Plasma in a Wide Range of Flux Densities.- ¿ 3. Spectral Composition of Reflected and Scattered Radiation.- II Investigation of the Absorption of Laser Radiation in Thin Targets.- ¿ 1. Experimental Setup.- ¿ 2. Multiframe Schlieren Photography in Ruby-Laser Light; Spatial Resolution.- ¿ 3. Determination of the Time of Bleaching of a Thin Target.- ¿ 4. Investigation of the Dynamics of Motion of Shock Waves in the Gas Surrounding the Target; Absorbed Energy.- ¿ 5. Discussion of Results.- III Reflection of Laser Radiation from a Dense Plasma.- ¿ 1. Experimental Setup.- ¿ 2. Behavior of the Coefficient of Reflection of Laser Radiation from a Plasma in the Flux-Density Interval 1010-1014 W/cm2.- ¿ 3. Dependence of the Reflection Coefficient on the Time; Plasma Probing by Ruby-Laser Radiation.- ¿ 4. Oscillations of Reflected Radiation with Time.- ¿ 5. Directivity of Reflected Radiation.- IV Generation of Harmonics of the Heating-Radiation Frequency in a Laser Plasma.- ¿ 1. Investigation of the Generation of the Second Harmonic of the Heating Radiation in a Laser Plasma; Dependence on the Flux Density; Variation with Time..- ¿ 2. Generation of 3/2?0 Line.- V Anisotropy of X Rays from a Laser Plasma.- ¿ l¿ Procedure of Multichannel Measurement of Continuous X Radiation.- ¿ 2. Investigation of the Directivity of the X Rays.- ¿ 3. Possibility of Measuring the Electron ¿Temperature¿ of a Laser Plasma by the ¿Absorber¿ Method.- Literature Cited.- Experimental Study of Cumulative Phenomena in a Plasma Focus and in a Laser Plasma V. A. Gribkov, O. N. Krokhin, G. V. Sklizkov, N. V. Filippov, and T. I. Filippova.- I Procedure of High-Speed Interferometric Investigation of a Nonstationary Dense Plasma.- ¿ 1. The Maximum Information Obtained by Optical Laser Research Methods.- ¿ 2. High-Speed Laser Setup for Interferometric Investigations of a Plasma Focus and Cumulative Laser-Plasma Configurations.- ¿ 3. Synchronization Methods.- ¿ 4. Discussion of the Applicability of Laser Interferometry and Interpretation of the Interference Patterns.- II Investigation of Cumulative Stage of Plasma Focus.- ¿ 1. Parameters of the ¿Plasma Focus¿ Installation.- ¿ 2. Results of Reduction of the Interference Patterns of the First Contraction of the Plasma Focus.- ¿ 3. Intermediate Phase.- ¿ 4. Second ¿Contraction¿ of Plasma Focus.- ¿ 5. Concluding Stage.- III Discussion of Results of Experiments with Plasma Focus.- ¿ 1. First¿Contraction¿.- ¿ 2. Intermediate Phase.- ¿ 3. Second #x201C;Contraction¿.- ¿ 4. Neutron Emission from Plasma Focus.- IV Investigations of Cumulative Laser Plasma.- ¿ 1. Experimental Setup.- ¿ 2. Collision of Two Laser Flares.- ¿ 3. Quasi-cylindrical Cumulation of Laser Plasma....- ¿ 4. Investigation of X Rays from a Cumulative Laser.- ¿ 5. Probe Studies of Laser Plasma.- V Discussion of Experimental Results.- ¿ 1. Collision of Flares.- ¿ 2. Cone Cumulation.- Conclusion.- Literature Cited.

Inhaltsverzeichnis

Stimulated Mandel' shtam - Brillouin Scattering Lasers V. V. Ragul'skii.- I Conditions for Obtaining Stationary Lasing with Stimulated Scattering of Light.- II Gains and Line Widths for SMBS in Gases.- III Single-Frequency SMBS Ring Laser.- IV Operation of SMBS Amplifier in the Saturation Regime.- V Q Switching by SMBS.- VI Inversion of the Exciting-Radiation Wave Front in SMBS.- VII SMBS in the Case of Exciting Radiation with a Broad Spectrum.- Compressed-Gas Lasers V. A. Danilychev, O. M. Kerimov, and I. B. Kovsh.- I Electroionization Method of Exciting Compressed-Gas Lasers.- II Electroionization CO2 High-Pressure Laser.- III High-Pressure Gas Lasers Using Other Working Media.- Conclusion.- Experimental Investigation of the Reflection and Absorptionof High-Power Radiation in a Laser Plasma O. N. Krokhin, G. V. Sklizkov, and A. S. Shikanov.- I Reflection of Laser Radiation from a Plasma (Survey of the Literature).- II Investigation of the Absorption of Laser Radiation in Thin Targets.- III Reflection of Laser Radiation from a Dense Plasma.- IV Generation of Harmonics of the Heating-Radiation Frequency in a Laser Plasma.- V Anisotropy of X Rays from a Laser Plasma.- Experimental Study of Cumulative Phenomena in a Plasma Focus and in a Laser Plasma V. A. Gribkov, O. N. Krokhin, G. V. Sklizkov, N. V. Filippov, and T. I. Filippova.- I Procedure of High-Speed Interferometric Investigation of a Nonstationary Dense Plasma.- II Investigation of Cumulative Stage of Plasma Focus.- III Discussion of Results of Experiments with Plasma Focus.- IV Investigations of Cumulative Laser Plasma.- V Discussion of Experimental Results.- Conclusion.- Literature Cited.

Produktdetails

Autoren N. G. Basov
Mitarbeit N G Basov (Herausgeber), N. G. Basov (Herausgeber), G Basov (Herausgeber), N G Basov (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2012
 
EAN 9781468416343
ISBN 978-1-4684-1634-3
Seiten 241
Abmessung 212 mm x 279 mm x 12 mm
Gewicht 640 g
Illustration VIII, 241 p.
Serien The Lebedev Physics Institute Series
Lebedev Physics Institute
Lebedev Physics Institute
The Lebedev Physics Institute Series
Thema Naturwissenschaften, Medizin, Informatik, Technik > Physik, Astronomie > Theoretische Physik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.