Fr. 70.00

Robust Speaker Recognition in Noisy Environments

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book discusses speaker recognition methods to deal with realistic variable noisy environments. The text covers authentication systems for; robust noisy background environments, functions in real time and incorporated in mobile devices. The book focuses on different approaches to enhance the accuracy of speaker recognition in presence of varying background environments. The authors examine: (a) Feature compensation using multiple background models, (b) Feature mapping using data-driven stochastic models, (c) Design of super vector- based GMM-SVM framework for robust speaker recognition, (d) Total variability modeling (i-vectors) in a discriminative framework and (e) Boosting method to fuse evidences from multiple SVM models.

Inhaltsverzeichnis

Robust Speaker Verification - A Review.- Speaker Verification in Noisy Environments using Gaussian Mixture Models.- Stochastic Feature Compensation for Robust Speaker Verification.- Robust Speaker Modeling for Speaker Verification in Noisy Environments.

Über den Autor / die Autorin

K. Sreenivasa Rao, Associate Professor, School of Information Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur). Sourjya Sarkar is a graduate student at the Indian Institute of Technology Kharagpur.

Zusammenfassung

This book discusses speaker recognition methods to deal with realistic variable noisy environments. The text covers authentication systems for; robust noisy background environments, functions in real time and incorporated in mobile devices. The book focuses on different approaches to enhance the accuracy of speaker recognition in presence of varying background environments. The authors examine: (a) Feature compensation using multiple background models, (b) Feature mapping using data-driven stochastic models, (c) Design of super vector- based GMM-SVM framework for robust speaker recognition, (d) Total variability modeling (i-vectors) in a discriminative framework and (e) Boosting method to fuse evidences from multiple SVM models.

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.