vergriffen

Einführung in die Kombinatorik

Deutsch · Taschenbuch

Beschreibung

Mehr lesen

Dieses Lehrbuch vermittelt die Grundlagen und Konzepte der modernen Kombinatorik in anschaulicher Weise. Die verständliche Darlegung richtet sich an Studierende der Mathematik, der Naturwissenschaften, der Informatik und der Wirtschaftswissenschaften und erlaubt einen einfachen und beispielorientierten Zugang zu den Methoden der Kombinatorik. Beginnend mit den Grundaufgaben der Kombinatorik wird der Leser Schritt für Schritt mit weiterführenden Themen wie erzeugende Funktionen, Rekurrenzgleichungen und der Möbiusinversion vertraut gemacht. Eine Vielzahl von Beispielen und Übungsaufgaben mit Lösungen erleichtern das Verständnis und dienen der Vertiefung und praktischen Anwendung des Lehrstoffes.

Die vorliegende zweite Auflage ist deutlich erweitert um das für die enumerative Kombinatorik wichtige Thema Graphenpolynome sowie um ein Kapitel Wörter und Automaten , das die Anwendung von formalen Sprachen und endlichen Automaten zur Bestimmung von erzeugenden Funktionen für kombinatorische Probleme aufzeigt.

Inhaltsverzeichnis

1 Abzählen von Objekten .- 1.1 Permutationen.- 1.2 Auswahlen.- 1.3 Partitionen von Mengen.- 1.4 Partitionen von natürlichen Zahlen.- 1.5 Verteilungen.- 1.6 Beispiele und Anwendungen.- Aufgaben.- 2 Erzeugende Funktionen .- 2.1 Einleitung und Beispiele.- 2.2 Formale Potenzreihen.- 2.3 Gewöhnliche erzeugende Funktionen.- 2.4 Exponentielle erzeugende Funktionen.- 2.5 Anwendungen erzeugender Funktionen.- Aufgaben.- 3 Rekurrenzgleichungen .- 3.1 Beispielprobleme.- 3.2 Elementare Methoden.- 3.3 Lösung mit erzeugenden Funktionen.- 3.4 Lineare Rekurrenzgleichungen.- 3.5 Nichtlineare Rekurrenzgleichungen.- Aufgaben.- 4 Summen .- 4.1 Elementare Methoden.- 4.2 Differenzen- und Summenoperatoren.- 4.3 Harmonische Zahlen.- 4.4 Weitere Methoden der Summenrechnung.- Aufgaben.- 5 Graphen .- 5.1 Grundbegriffe der Graphentheorie.- 5.2 Spannbäume.- 5.3 Graphen und Matrizen.- 5.4 Das Zählen von Untergraphen Graphenpolynome.- Aufgaben.- 6 Geordnete Mengen .- 6.1 Grundbegriffe.- 6.2 Grundlegende Verbände.- 6.3 Die Inzidenzalgebra.- 6.4 Die Möbius-Funktion.- 6.5 Das Prinzip der Inklusion-Exklusion.- 6.6 Die Möbius-Inversion im Partitionsverband.- Aufgaben.- 7 Permutationen .- 7.1 Die Stirling-Zahlen erster Art.- 7.2 Die symmetrische Gruppe.- 7.3 Der Zyklenzeiger.- 7.4 Geschachtelte Symmetrie.- Aufgaben.- 8 Abzählen von Graphen und Bäumen .- 8.1 Graphen.- 8.2 Die Gruppe S n (2) .- 8.3 Isomorphieklassen von Graphen.- 8.4 Bäume.- 8.5 Planare und binäre Bäume.- Aufgaben.- 9 Wörter und Automaten .- 9.1 Wörter und formale Sprachen.- 9.2 Erzeugende Funktionen.- 9.3 Automaten.- 9.4 Reduktionen von Automaten.- 9.5 Unendliche Automaten.- 9.6 Erzeugende Funktionen in mehreren Variablen und mit Parametern.- Aufgaben.- 10 Ausblicke .- Lösungen der Aufgaben.- Literaturverzeichnis.- Symbolverzeichnis.- Index.

Über den Autor / die Autorin

Peter Tittmann hält Vorlesungen zur Mathematik für Ingenieur- und Informatikstudenten an der Hochschule Mittweida.

Produktdetails

Autoren Peter Tittmann
Verlag Springer, Berlin
 
Sprache Deutsch
Produktform Taschenbuch
Erschienen 14.09.2014
 
EAN 9783642545887
ISBN 978-3-642-54588-7
Seiten 300
Abmessung 156 mm x 239 mm x 15 mm
Gewicht 472 g
Illustration 89 SW-Abb., 24 Tabellen
Serien Spektrum Hochschultaschenbücher
HochschulTaschenbuch
Spektrum Hochschultaschenbücher
HochschulTaschenbuch
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Grundlagen

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.