Fr. 164.40

Complex Analysis

Englisch · Fester Einband

Versand in der Regel in 1 bis 3 Wochen (kurzfristig nicht lieferbar)

Beschreibung

Mehr lesen

Informationen zum Autor Kunihiko Kodaira (1915-97) worked in many areas including harmonic integrals, algebraic geometry and the classification of compact complex analytic surfaces. He held faculty positions at many universities including the University of Tokyo, Harvard University, Massachusetts, Stanford University, California, and The Johns Hopkins University, and the Institute for Advanced Study in Princeton. He was awarded a Fields medal in 1954 and a Wolf Prize in 1984. Klappentext Written by a master of the subject, this text will be appreciated by students and experts for the way it develops the classical theory of functions of a complex variable in a clear and straightforward manner. In general, the approach taken here emphasises geometrical aspects of the theory in order to avoid some of the topological pitfalls associated with this subject. Thus, Cauchy's integral formula is first proved in a topologically simple case from which the author deduces the basic properties of holomorphic functions. Starting from the basics, students are led on to the study of conformal mappings, Riemann's mapping theorem, analytic functions on a Riemann surface, and ultimately the Riemann-Roch and Abel theorems. Profusely illustrated, and with plenty of examples, and problems (solutions to many of which are included), this book should be a stimulating text for advanced courses in complex analysis. Zusammenfassung Written by a master of the subject! this profusely illustrated textbook! which includes many examples and exercises! will be appreciated by students and experts. The author develops the classical theory of complex functions! emphasising geometrical ideas in order to avoid some of the topological pitfalls associated with this subject. Inhaltsverzeichnis 1. Holomorphic functions; 2. Cauchy's theorem; 3. Conformal mappings; 4. Analytic continuation; 5. Riemann's mapping theorem; 6. Riemann surfaces; 7. The structure of Riemann surfaces; 8. Analytic functions on a closed Riemann surface....

Produktdetails

Autoren Kunihiko Kodaira
Mitarbeit A. F. Beardon (Herausgeber), T. K. Carne (Herausgeber)
Verlag Cambridge University Press ELT
 
Sprache Englisch
Produktform Fester Einband
Erschienen 23.08.2007
 
EAN 9780521809375
ISBN 978-0-521-80937-5
Seiten 418
Serien Cambridge Studies in Advanced Mathematics
Cambridge Studies in Advanced
Cambridge Studies in Advanced Mathematics
Cambridge Studies in Advanced
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.