Fr. 77.00

Schwarz-Pick Type Inequalities

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent results in geometric function theory presented here include the attractive steps on coefficient problems from Bieberbach to de Branges, applications of some hyperbolic characteristics of domains via Beardon-Pommerenke's theorem, a new interpretation of coefficient estimates as certain properties of the Poincaré metric, and a successful combination of the classical ideas of Littlewood, Löwner and Teichmüller with modern approaches. The material is complemented with historical remarks on the Schwarz Lemma and a chapter introducing some challenging open problems.
The book will be of interest for researchers and postgraduate students in function theory and hyperbolic geometry.

Inhaltsverzeichnis

Basic coefficient inequalities.- The Poincaré metric.- Basic Schwarz-Pick type inequalities.- Punishing factors for special cases.- Multiply connected domains.- Related results.- Some open problems.

Zusammenfassung

This book gives a unified representation of generalizations of the Schwarz Lemma. It examines key coefficient theorems of the last century and explains the connection between coefficient estimates and characteristics of the hyperbolic geometry in a domain.

Zusatztext

From the reviews:
“The aim of this book is to give a unified presentation of some recent results in geometric function theory together with a consideration of their historical sources. The extensive historical references are … interesting, thorough and informative. … this book is filled with many challenging conjectures and suggested problems for exploring new research. In summary this is a delightful book that anyone interested in interrelating geometry and classical geometric function theory should read.” (Roger W. Barnard, Mathematical Reviews, Issue 2010 j)

Bericht

From the reviews:
"The aim of this book is to give a unified presentation of some recent results in geometric function theory together with a consideration of their historical sources. The extensive historical references are ... interesting, thorough and informative. ... this book is filled with many challenging conjectures and suggested problems for exploring new research. In summary this is a delightful book that anyone interested in interrelating geometry and classical geometric function theory should read." (Roger W. Barnard, Mathematical Reviews, Issue 2010 j)

Produktdetails

Autoren Farit Avkhadiev, Farit G Avkhadiev, Farit G. Avkhadiev, Karl-Joachim Wirths
Verlag Springer, Basel
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 27.02.2009
 
EAN 9783764399993
ISBN 978-3-7643-9999-3
Seiten 156
Abmessung 171 mm x 9 mm x 233 mm
Gewicht 336 g
Illustration VIII, 156 p.
Serien Frontiers in Mathematics
Frontiers in Mathematics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Analysis, B, Character, Function, geometry, Theorem, Mathematics and Statistics, Derivative, Functional Analysis, Analysis (Mathematics), Mathematical analysis, Hyperbolic Geometry, Inequalities, boundary element method, functions, analytic function

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.