Fr. 134.00

Stereo Scene Flow for 3D Motion Analysis

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

The accurate and precise estimation of three-dimensional motion vector fields in real time remains one of the key targets for the discipline of computer vision.
This important text/reference presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, covering topics from variational methods and optic flow estimation, to adaptive regularization and scene flow analysis. This in-depth discussion culminates in the development of a novel, accurate and robust scene flow method for the higher-level challenges posed by real-world applications.
Topics and features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving motion from stereo image sequences; analyses the error characteristics for motion variables, and derives scene flow metrics for movement likelihood and velocity; introduces a framework for scene flow-based moving object detection and segmentation, and discusses the application of Kalman filters for propagating scene flow estimation over time; includes pseudo code for all important computational challenges; contains Appendices on data terms and quadratic optimization, and scene flow implementation using Euler-Lagrange equations, in addition to a helpful Glossary.
A valuable reference for researchers and graduate students of segmentation, optical flow and scene flow, this unique book will also be of great interest to professionals involved in the development of driver assistance systems.

Inhaltsverzeichnis

Machine Vision Systems.- Optical Flow Estimation.- Residual Images and Optical Flow Results.- Scene Flow.- Motion Metrics for Scene Flow.- Extensions of Scene Flow.- Conclusion and Outlook.

Zusammenfassung

This book presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, culminating in the development of a novel, accurate and robust optic flow method. Features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving motion from stereo image sequences; analyses the error characteristics for motion variables, and derives scene flow metrics for movement likelihood and velocity; introduces a framework for scene flow-based moving object detection and segmentation; includes Appendices on data terms and quadratic optimization, and scene flow implementation using Euler-Lagrange equations, in addition to a helpful Glossary.

Produktdetails

Autoren Daniel Cremers, Andrea Wedel, Andreas Wedel
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 01.09.2011
 
EAN 9780857299642
ISBN 978-0-85729-964-2
Seiten 128
Abmessung 165 mm x 236 mm x 14 mm
Gewicht 352 g
Illustration IX, 128 p. 74 illus., 60 illus. in color.
Thema Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Anwendungs-Software

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.