Fr. 159.00

Metric Foliations and Curvature

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

In the past three or four decades, there has been increasing realization that metric foliations play a key role in understanding the structure of Riemannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a representative handful by means of metric fibrations or deformations thereof.
This text is an attempt to document some of these constructions, many of which have only appeared in journal form. The emphasis here is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space.

Inhaltsverzeichnis

Submersions, Foliations, and Metrics.- Basic Constructions and Examples.- Open Manifolds of Nonnegative Curvature.- Metric Foliations in Space Forms.

Zusammenfassung

In the past three or four decades, there has been increasing realization that metric foliations play a key role in understanding the structure of Riemannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a representative handful by means of metric fibrations or deformations thereof.
This text is an attempt to document some of these constructions, many of which have only appeared in journal form. The emphasis here is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space.

Zusatztext

From the reviews:

“The book under review is one of five or six books on foliations that should be in the professional library of every geometer. … authors define the fundamental tensors of a Riemannian submersion tensors that carry over to a metric foliation on M … . gives a brief introduction to the geometry of the second tangent bundle and related topics needed for the study of metric foliations on compact space forms of non negative sectional curvature … .” (Richard H. Escobales, Jr., Mathematical Reviews, Issue 2010 h)

Bericht

From the reviews: "The book under review is one of five or six books on foliations that should be in the professional library of every geometer. ... authors define the fundamental tensors of a Riemannian submersion tensors that carry over to a metric foliation on M ... . gives a brief introduction to the geometry of the second tangent bundle and related topics needed for the study of metric foliations on compact space forms of non negative sectional curvature ... ." (Richard H. Escobales, Jr., Mathematical Reviews, Issue 2010 h)

Produktdetails

Autoren Detle Gromoll, Detlef Gromoll, Gerard Walschap
Verlag Springer, Basel
 
Sprache Englisch
Produktform Fester Einband
Erschienen 03.03.2009
 
EAN 9783764387143
ISBN 978-3-7643-8714-3
Seiten 176
Gewicht 397 g
Illustration VIII, 176 p.
Serien Progress in Mathematics
Progress in Mathematics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Geometrie

B, Mathematics and Statistics, Manifold, Differential Geometry, foliation, space form

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.