Fr. 210.00

Large Sieve and Its Applications - Arithmetic Geometry, Random Walks and Discrete Groups

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

Informationen zum Autor Emmanuel Kowalski is Professor in the Departement Mathematik at ETH Zürich. Klappentext Among the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups. Zusammenfassung The 'large sieve'! an important technical tool of analytic number theory! has advanced extensively in recent years. This book develops a general form of sieve inequality! and describes its varied! sometimes surprising applications! with potential uses in fields as wide ranging as topology! probability! arithmetic geometry and discrete group theory. Inhaltsverzeichnis Preface; Prerequisites and notation; 1. Introduction; 2. The principle of the large sieve; 3. Group and conjugacy sieves; 4. Elementary and classical examples; 5. Degrees of representations of finite groups; 6. Probabilistic sieves; 7. Sieving in discrete groups; 8. Sieving for Frobenius over finite fields; Appendix A. Small sieves; Appendix B. Local density computations over finite fields; Appendix C. Representation theory; Appendix D. Property (T) and Property (¿); Appendix E. Linear algebraic groups; Appendix F. Probability theory and random walks; Appendix G. Sums of multiplicative functions; Appendix H. Topology; Bibliography; Index....

Produktdetails

Autoren E. Kowalski, E. (Swiss Federal University (Eth) Kowalski, Emmanuel Kowalski
Verlag Cambridge University Press ELT
 
Sprache Englisch
Produktform Fester Einband
Erschienen 22.05.2008
 
EAN 9780521888516
ISBN 978-0-521-88851-6
Seiten 316
Serien Cambridge Tracts in Mathematics
Cambridge Tracts in Mathematic
Cambridge Tracts in Mathematics
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Sonstiges

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.