Fr. 189.00

Markov Networks in Evolutionary Computation

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs). EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis.
This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models.
All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current research trends and future perspectives in the enhancement and applicability of EDAs are also covered. The contributions included in the book address topics as relevant as the application of probabilistic-based fitness models, the use of belief propagation algorithms in EDAs and the application of Markov network based EDAs to real-world optimization problems. The book should be of interest to researchers and practitioners from areas such as optimization, evolutionary computation, and machine learning.

Inhaltsverzeichnis

From the content: Probabilistic Graphical Models and Markov Networks.- A review of Estimation of Distribution Algorithms and Markov networks.- MOA - Markovian Optimisation Algorithm.- DEUM - Distribution Estimation Using Markov Networks.- MN-EDA and the use of clique-based factorisations in EDAs.- Convergence Theorems of Estimation of Distribution Algorithms.- Adaptive Evolutionary Algorithm based on a Cliqued Gibbs Sampling over Graphical Markov Model Structure.

Zusammenfassung

Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs).  EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis.
This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models.
All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current research trends and future perspectives in the enhancement and applicability of EDAs are also covered.  The contributions included in the book address topics as relevant as the application of probabilistic-based fitness models, the use of belief propagation algorithms in EDAs and the application of Markov network based EDAs to real-world optimization problems. The book should be of interest to researchers and practitioners from areas such as optimization, evolutionary computation, and machine learning.

Produktdetails

Mitarbeit Santana (Herausgeber), Santana (Herausgeber), Roberto Santana (Herausgeber), Siddharth Shakya (Herausgeber), Siddhartha Shakya (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 07.05.2014
 
EAN 9783642444944
ISBN 978-3-642-44494-4
Seiten 244
Abmessung 159 mm x 16 mm x 235 mm
Gewicht 406 g
Illustration XX, 244 p.
Serien Adaptation, Learning, and Optimization
Adaptation, Learning, and Optimization
Evolutionary Learning and Optimization
Themen Naturwissenschaften, Medizin, Informatik, Technik > Technik > Allgemeines, Lexika

B, Artificial Intelligence, Wirtschaftstheorie und -philosophie, Economics, engineering, Computational Intelligence, Institutional/Evolutionary Economics, Evolutionary economics, Economic theory and philosophy, Institutional and Evolutionary Economics

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.