Fr. 189.00

Radial Basis Function Networks 1 - Recent Developments in Theory and Applications

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 1 covers advances in training algorithms, variations on the architecture and function of the basis neurons, and hybrid paradigms, for example RBF learning using genetic algorithms. Both volumes will prove extremely useful to practitioners in the field, engineers, researchers and technically accomplished managers.

Inhaltsverzeichnis

Dynamic RBF networks.- A hyperrectangle-based method that creates RBF networks.- Hierarchical radial basis function networks.- RBF neural networks with orthogonal basis functions.- On noise-immune RBF networks.- Robust RBF networks.- An introduction to kernel methods.- Unsupervised learning using radial kernels.- RBF learning in a non-stationary environment: the stability-plasticity dilemma.- A new learning theory and polynomial-time autonomous learning algorithms for generating RBF networks.- Evolutionary optimization of RBF networks.

Zusammenfassung

The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 1 covers advances in training algorithms, variations on the architecture and function of the basis neurons, and hybrid paradigms, for example RBF learning using genetic algorithms. Both volumes will prove extremely useful to practitioners in the field, engineers, researchers and technically accomplished managers.

Produktdetails

Mitarbeit C Jain (Herausgeber), C Jain (Herausgeber), Lakhmi C. Jain (Herausgeber), Robert J. Howlett (Herausgeber), Rober J Howlett (Herausgeber), Robert J Howlett (Herausgeber), Robert J. Howlett (Herausgeber), Robert J.Howlett (Herausgeber), Lakhmi C. Jain (Herausgeber)
Verlag Physica-Verlag
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 26.10.2010
 
EAN 9783790824827
ISBN 978-3-7908-2482-7
Seiten 318
Gewicht 511 g
Illustration XVIII, 318 p.
Serien Studies in Fuzziness and Soft Computing
Studies in Fuzziness and Soft Computing
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Informatik

Performance, B, Optimization, Robotics, Artificial Intelligence, Mustererkennung, Robot, Supervised Learning, Neural Networks, engineering, pattern recognition, Automated Pattern Recognition, Pattern recognition systems, proving, learning theory, neural network

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.