Fr. 59.50

Lie-Gruppen und Lie-Algebren

Deutsch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Dieses Buch versteht sich als Einführung in die Theorie der Lie-Gruppen. Der Begriff der Lie-Gruppen wird ausgehend von den einfachsten Beispielen, den Matrizengruppen, entwickelt. Eine große Anzahl von Problemen für Lie-Gruppen kann man durch Übertragung auf die zugehörigen Lie-Algebren lösen. Dies ist der Leitgedanke des Buches. Vorausgesetzt werden Kenntnisse in der Linearen Algebra, der Differentialrechnung mehrerer Variablen und der elementaren Gr uppentheorie.

Inhaltsverzeichnis

I Lie-Gruppen.-
I.1 Die allgemeine lineare Gruppe.-
I.2 Die Exponentialfunktion.-
I.3 Abgeschlossene Untergruppen von Gl(n,IK).-
I.4 Die Campbell-Hausdorff-Formel.-
I.5 Analytische Untergruppen.-
I.6 Bogenzusammenhängende Gruppen.-
I.7 Homomorphismen.-
I.8 Fundamentalgruppen und Überlagerungen.-
I.9 Einfach zusammenhängende Überlagerungsgruppen.- II Lie-Algebren.-
II.1 Definitionen und Beispiele.-
II.2 Nilpotente und auflösbare Lie-Algebren.-
II.3 Halbeinfache Lie-Algebren.-
II.4 Erweiterungen und Moduln.-
II.5 Lie-Algebra-Kohomologie.-
II.6 Einhüllende Algebren.-
II.7 Der Satz von Ado.- III Strukturtheorie von Lie-Gruppen.-
III.1 Analytische Mannigfaltigkeiten.-
III.2 Die Lie-Algebra und die Exponentialfunktion.-
III.3 Anwendungen der Exponentialfunktion.-
III.4 Das Haarsche Maß.-
III.5 Lie-Gruppen mit kompakter Lie-Algebra.-
III.6 Halbeinfache Lie-Gruppen.-
III.7 Maximal kompakte Untergruppen, das Zentrum und Mannigfaltigkeitsfaktoren.-
III.8 Dichte analytische Untergruppen.-
III.9 Komplexe Lie-Gruppen.-
III.10 Charakterisierung der linearen Lie-Gruppen.-
III.11 Anwendung der Theorie auf die Klassischen Gruppen.- Anhang: Topologische Grundlagen.- Lehrbücher über Lie-Gruppen und Algebren.- Symbolverzeichnis.

Über den Autor / die Autorin

Joachim Hilgert forscht und lehrt am Institut für Mathematik der Universität Paderborn.

Zusammenfassung

Dieses Buch versteht sich als Einführung in die Theorie der Lie-Gruppen. Der Begriff der Lie-Gruppen wird ausgehend von den einfachsten Beispielen, den Matrizengruppen, entwickelt. Eine große Anzahl von Problemen für Lie-Gruppen kann man durch Übertragung auf die zugehörigen Lie-Algebren lösen. Dies ist der Leitgedanke des Buches. Vorausgesetzt werden Kenntnisse in der Linearen Algebra, der Differentialrechnung mehrerer Variablen und der elementaren Gruppentheorie.

Produktdetails

Autoren Joachi Hilgert, Joachim Hilgert, Karl-Hermann Neeb
Verlag Vieweg+Teubner
 
Sprache Deutsch
Produktform Taschenbuch
Erschienen 01.01.1991
 
EAN 9783528064327
ISBN 978-3-528-06432-7
Seiten 361
Abmessung 162 mm x 21 mm x 228 mm
Gewicht 560 g
Illustration X, 361 S. 1 Abb.
Themen Geisteswissenschaften, Kunst, Musik > Pädagogik > Schulpädagogik, Didaktik, Methodik
Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Arithmetik, Algebra

Algebra, A, Education, Lineare Algebra, Language Education, Language and education, Matrizengruppen

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.